

SimplyDroid: Efficient Event Sequence
Simplification for Android Application*

Bo Jiang, Yuxuan Wu, Teng Li
School of Computer Science and Engineering

Beihang University
Beijing, China

{jiangbo, wuyuxuan, liteng}@buaa.edu.cn

W.K. Chan†
Department of Computer Science

City University of Hong Kong
Hong Kong

wkchan@cityu.edu.hk

Abstract—To ensure the quality of Android applications, many
automatic test case generation techniques have been proposed.
Among them, the Monkey fuzz testing tool and its variants are
simple, effective and widely applicable. However, one major
drawback of those Monkey tools is that they often generate many
events in a failure-inducing input trace, which makes the follow-
up debugging activities hard to apply. It is desirable to simplify or
reduce the input event sequence while triggering the same failure.
In this paper, we propose an efficient event trace representation
and the SimplyDroid tool with three hierarchical delta-debugging
algorithms each operating on this trace representation to simplify
crash traces. We have evaluated SimplyDroid on a suite of real-life
Android applications with 92 crash traces. The empirical result
shows that our new algorithms in SimplyDroid are both efficient
and effective in reducing these event traces.

Index Terms—Test case reduction, delta debugging, event
sequence reduction, Android

I. INTRODUCTION

The mobile Internet industry has witnessed an explosive
growth in recent years. Both the number and the complexity of
mobile applications have increased rapidly. According to
Gartner [33], the Android OS has taken 87.8% of the smart
phone market share in the 3rd quarter of 2016. In Google Play
[34], there are more than 2.6 million Android applications [38].

To increase the satisfaction of end-users, mobile application
developers must improve the quality of their applications.
Mobile testing is one important measure to achieve this goal.
Different kinds of testing techniques [8] have been proposed to
test Android applications, including fuzz testing, GUI traversal-
based testing [3][17], and search-based testing [18]. Fuzz testing
is represented by the family of Monkey tools, which includes the
built-in Monkey tool of Android OS and its improved versions
by third party. Owing to their simplicity, effectiveness, and wide
applicability, the improved monkey tools are widely adopted by
cloud-based mobile testing platforms [35][39][41].

A major limitation of these fuzz testing techniques is that
they often generate a large number of input events before
triggering a failure, which makes follow-up debugging tasks

hard to apply. In such scenarios, simplifying input event
sequence that triggers the same failure is desirable.

Delta debugging (DD) [27] has been applied to perform such
test input reductions on traditional applications, Web
applications, and compilers, etc. There are also research works
on reducing input event sequences for Android applications with
the emphasis on handling execution non-determinism based on
the idea of DD [9]. Nonetheless, in general, DD techniques are
slow to generate the reduced input. The problem with the DD
strategy is that its partition strategy is unaware of the presence
of interaction sessions of input events with end users, which may
lead to large number of unsuccessful trials (i.e., fail to trigger
failure) in the reduction process.

Hierarchical Delta Debugging [19] improves the efficiency
of DD by revealing the hierarchical structures of test cases and
applying DD according to such structures. We observe that an
Android input event sequence can be structured hierarchically
based on interaction sessions and sub-session with users.

Our insight into the events trace reduction problem is that a
long input event sequence often contains sub-sequences
representing small interactive sessions with the end users. These
sessions of events forms a natural boundary for reduction as they
can often be reduced together with high probability. We further
observe that the relationship of input events is reflected in the
hierarchical relationship of their corresponding GUI states. Thus,
we seek to find the hierarchical relationships between input
events by building and analyzing the GUI state hierarchy tree as
trace representation.

Based on the trace reprsentation, we further propose an input
event sequence simplification tool SimplyDroid, which contains
a family of three test case reduction algorithms based on the
notion of hierarchical delta debugging coined as Hierarchical
Delta Debugging (HDD), Balanced Hierarchical Delta
Debugging (BHDD), and Local Hierarchical Delta Debugging
(LHDD) each operating on the above trace representation. The
HDD algorithm is an adaption of the existing notion of
hierarchical delta debugging to show the applicability of our
trace representation. Both BHDD and LHDD are our new HDD
algorithms that use the structural property of the trace
representation to improve the reduction efficiency without
significant loss of reduction effectiveness.

We have used 92 input traces with crash occurrences from 8
real-life Android applications with real and seeded faults to
evaluate the SimplyDroid tool. The experimental results show

* This research is supported in part by NSFC (project no. 61772056), the
Research Fund of the MIIT of China (project no. MJ-Y-2012-07), the RGC GRF
of HKSAR (project nos. 111313, 11201114, 11200015, and 11214116), and the
research fund of the State Key Laboratory of Virtual Reality Technology and
Systems.
† Correspondence author

978-1-5386-2684-9/17$15.00 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Technical Research

297

that all the three techniques have improved reduction efficiency
over the classic DD technique without loss of effectiveness.
Furthermore, LHDD is significantly more efficient than DD,
HDD and BHDD, which makes it competitive to apply.

The contribution of this paper is three-fold. First, it presents
a novel GUI state hierarchy tree representation to model an
Android input event trace. Second, it proposes the first family of
efficient HDD algorithms for simplifying Android input event
traces. Third, it reports the first comprehensive experiment on 92
crash traces of 8 real-world Android applications that evaluates
the effectiveness and efficiency of our family of HDD
algorithms and trace representation.

The organization of the remaining sections is as follows. In
Section II, we present a motivating example to illustrate our key
ideas. In Section III, we present our tool SimplyDroid 1 as well
as the family of input sequence reduction algorithms. Section IV
reports a comprehensive experimental study, in which we have
evaluated the effectiveness and efficiency of our family of HDD
algorithms operating on our trace representation, followed by the
related work in Section V. Finally, we conclude our work in
Section VI.

II. MOTIVATING EXAMPLE

This section presents a motivating example of our work.

A. GUI State Hierarchy Tree as Trace Representation

To understand the hierarchical structure of GUI input events,
we have to build a partial GUI state hierarchy tree and map the
input events to it. Here “partial” means the GUI hierarchy tree
only reflects those parts of the GUI hierarchy related to the
current input event sequence for simplification. Fig. 1 shows the
GUI state hierarchy tree built from a real crash trace from the
Android application DalvikExplorer.

When building the GUI state hierarchy tree, we use the
hierarchical relationship of GUI states to identify the
hierarchical relationship of their corresponding events. In this
state hierarchy tree, each node with number i not only represents
the event i in the crash trace, but also represents the GUI state
before processing the event i. An edge in the GUI state
hierarchy tree represents the parent-child (hierarchical)
relationship between the two corresponding GUI states.

If a new node n with a state different from any nodes on the
path from the root node to its previous node, then the node n is
defined as a child node of its previous node; otherwise, the node
n is defined as a new (and right) sibling node of the equivalent
node having the same state as n. In Fig. 1, within the state
hierarchy tree, we use the same color to represent equivalent
states (sibling) and the last node without any index to stand for
state “crash”. With the GUI hierarchy tree construction process,
new events will always grow at the rightmost sub-tree. Thus,
the crash node (i.e., the last event of the event sequence) is
always the rightmost node at the bottom level of the rightmost
sub-tree of the whole tree. Furthermore, the parent and the
ancestors of the crash node are always the last nodes in their
corresponding levels.

We have built an enhanced Monkey tool to log the
application GUI states during testing. The definition of GUI state
can have different granularities. In the current version of
SimplyDroid, we use an Activity ID to represent a GUI state,
which is a lightweight solution. Using a finer level of GUI state
(e.g., GUI structure) definition may lead to different reduction
results, whose tradeoff is interesting to explore in the future.

Therefore, our crash traces contain not only the sequence of
input events but also the corresponding GUI states. More
specifically, our crash trace of events is in the form e1, e2, …,
en, and it corresponds to the GUI state trace s1, s2, …, sn-1, sn,

crash state. Upon receiving event ei, the state si transits to si+1.

The GUI state hierarchy tree is constructed as follows. For
each state si and event ei with the same number i, a new node n
is constructed. Then node n is compared with each node (state)
m from root to its previous node si-1 in turn. If si is equal to any
node m, node n is added as a sibling node of m. Otherwise, n is
added as a child node of node si-1. The tree construction
algorithm will be presented in Section III.

Fig. 1 GUI state hierarchy tree of an exemplified trace

B. The Reduction Process of Classic DD

The Delta Debugging (DD) algorithm makes no use of the
hierarchical relationships of GUI states [27]. It partitions an
input event sequence into subsequences with equal size, and
performs reduction with increasingly finer granularity. For the
exemplified crash trace of length 36, in our experiment, the DD
algorithm used 38 trial executions by spending 3 minutes and
15 seconds before getting the final reduced test input sequence
1, 22, 23, 36. We observed that many of these 38 trial
executions generated invalid traces, which wasted efforts.

C. The Reduction Process of HDD

Fig. 2 Intermediate reduction attempts of HDD

The idea of HDD is to perform the reduction from a higher
level to a lower level on a GUI state hierarchy tree. In this way,
the sub-trees of a node can be reduced together, leading to

1 The SimplyDroid tool is open source at https://github.com/gongbell/SimplyDroid

298

higher reduction efficiency. Within each level, the reduction
strategy of HDD is similar to DD. Fig. 2 shows the reduction
attempts of HDD within level 1. While processing level 1, HDD
equally partitions the node set (2, 7, 17, 18, 21, 22) shown in
Fig. 1 into two parts (2, 7, 17) and (18, 21, 22). It tries to remove
one part or the other. As a result, the result for the first round of
reduction is shown in Fig. 2(a). We can see that those nodes (2,
7, 17) and their sub-trees are all eliminated in one round. Then
the node set (18, 21, 22) becomes the input for the next iteration
of reduction. This node set is again partitioned into two parts
(18, 21) and (22) for reduction. The result for the second round
of reduction is shown in Fig. 2(b). The reduction at level 1 stops
because there is only one node numbered 22 remained. Then the
reduction at levels 2 and 3 continue iteratively. Finally, HDD
used 6 trial executions by spending 64 seconds to get the same
reduction result 1, 22, 23, 36 as DD. We can see from the
reduction process that HDD is more efficient than DD.

D. The Reduction Process of BHDD

BHDD is based on the insight that many GUI state hierarchy
trees in real-world scenarios are imbalanced: sub-trees with
more nodes tend to stay at one side. These trees may make HDD
to spend more execution trails on reducing small node sets.
BHDD takes the size of whole sub-tree rooted at each node into
consideration, and thus has the potential to reduce more nodes
in each round of execution trial than HDD.

As shown in Fig. 3, we label the size of the sub-tree for each
node at level 1. The partition strategy of BHDD tries to make
the total number of nodes in each partition as close as possible.
Thus, the first round of partition for BHDD generates node sets
(2, 7, 17, 18) and (21, 22). The former has a total of 19 nodes
and the latter has a total of 16 nodes. In this way, for an
imbalanced tree, BHDD may reduce more events in each round.
For the example trace, BHDD used 43 seconds with 6 trial
executions to get the same reduction result as DD.

Fig. 3 Partition strategy of BHDD

E. The Reduction Process of LHDD

As discussed in Section II A, the parent and the ancestors of
the crash node are always the last nodes (e.g., node 22 and 23)
in their corresponding levels. We can see from the GUI
hierarchy tree of the example that these ancestor nodes of the
crash node (e.g., node 22 and 23) are critical because at these
nodes, the application under test transits to the next level of GUI
state closer to the crash node. Based on this observation, the
LHDD algorithm adopts a heuristic: reducing the sequence of
events as long as the transition from the last node of one level

to the first node of its next level is preserved. For the
exemplified GUI tree in Fig. 1, we need only to check whether
the transition 22,23 is successful at (blue) level 1 (Fig. 4(b))
and the transition 23, 24 is successful at (orange) level 2. At
the bottom level, LHDD checks for crash occurrence.

In this way, we effectively convert the reduction process
from a global optimization problem into a “partial” local
optimization problem. By “local”, we mean that the reduction
process needs not check the sub-tree of the last node, and by
“partial” we mean that the subtree of nodes other than the last
node should still be checked. For example, when reducing at
level 1 (blue nodes), LHDD does not include the subtree rooted
at node 22 for checking (i.e., local), but includes the subtrees
rooted at 2, 17 and 18 for checking (i.e. partial local). In our
experience, the subtree of the last node is often large in size. In
such scenarios, intuitively, LHDD saves a lot of time.

To further optimize the local reduction process, LHDD
adopts another heuristic before performing the DD reduction at
each level. Since the reduced event sequence at current level
must include the last node, it incrementally selects nodes
(events) with number equal to power of 2 from the last node to
front for trial execution and stops when it finds the first sub-
sequence of events that can still reach the first node in the next
level. As shown in Fig. 4(a), the pre-selection process will try
event sequence 22, 21, 22, and 17, 18, 19, 20, 21, 22 in
turn until the event sequence is accepted by the local reduction
criteria. Finally, LHDD used only 16 seconds with 4 trial
executions to get the same reduction result, which is much more
efficient than the previous three DD algorithms.

III. OUR EFFICIENT EVENT TRACE REDUCTION FRAMEWORK

In this section, we first present the overall design of our event
trace reduction system. Then we present three test case reduction
algorithms: HDD, IHDD, and LHDD.

Fig. 4 Pre-selection and local reduction strategy of LHDD

Fig. 5 Design of SimplyDroid

 Android Device Testing Host

ADB

Enhanced Monkey
with State Logger

States
Log

Test Case
Reduction

Engine

SimplyDroid

Testing
results

Application

Monkey Scripts
Reduced
Test Case

Test Case
(Crash Trace)

Results Checker

Android OS

299

A. Design of SimplyDroid

The overall design of SimplyDroid is shown in Fig. 5. The
input of SimplyDroid is the original test case (i.e., the original
crash trace), while the output is a finally reduced test case. The
SimplyDroid tool consists of 3 cooperating modules (colored
blue): the test case reduction engine, the result checker, and the
enhanced Monkey with application state logger. The test case
reduction engine is the core of the SimplyDroid tool, which
realizes the sets of test case reduction algorithms.

The reduction process is iterative, where the test case
reduction engine repeatedly sends reduced Monkey events to the
application under test. The enhanced monkey in turn sends the
inputs in the script to the application under test. We also
enhanced Monkey to record the state of the application (i.e.,
Activity ID) upon sending each event. At the end of a test script
execution, the result checker checks the results by comparing
exception messages and the stack traces outputted by Monkey.
Then, the test results and the GUI state log is feedback to the
reduction engine to continue the delta debugging cycle. Finally,
the reduced test case is outputted.

B. Building GUI State Hierarchy Tree

As shown in Table 1, the algorithm builds the GUI state
hierarchy tree from the crash trace containing the input events
and states. As discussed in Section II, the crash trace of states is
in the form <s1, s2, …, sn, crash state> where si represents states.
Note there is a corresponding events trace <e1, e2, …, en> where
each event ei triggers the transition from state si to si+1. The
algorithm builds a new node for each state si (line 1 to 3). Then
it is compared with the nodes (states) from its previous node si-1

to the root node (line 4 to 11). If si is equal to any node, it is
added as a sibling node to it. Otherwise, it is added as a child
node of its previous node (line 12 & 13).

TABLE 1. THE GUI HIERARCHY TREE CONSTRUCTION ALGORITHM
 procedure build(S)
 Input S : the sequences of activity state logged.
 Output r : the root node of GUI tree built.
 begin
1 n0 = new Node() //n0 is an empty node
2 for(i : 1 to length(S)) {
3 ni = new node(si) //the state of node ni is si
4 ns = ni-1 //start comparison from previous node
5 while(ns != n0) {
6 if(ni.state == ns.state){//find a node with same state as ni

7 set ni as a sibling node of ns
8 break
9 }
10 ns = ns.parent //walk up the tree,
11 } //end while
12 if(ns == n0) { //no node in the path to root have same state
13 set ni as a child node of ni-1
14 } //end if
15 } //end for
16 return n0 //return the root node
 end

C. Hierarchical Delta Debugging Algorithm (HDD)

As shown in Table 2, the HDD algorithm is a realization of
the idea of existing hierarchical delta debugging but operating
on our tree-based representation of a trace.

TABLE 2 THE HDD ALGORITHM
procedure hdd(E, r)

 Input E : the sequence of events logged.
Input r : the root node of the GUI state hierarchy tree.
Output Er : the simplified event sequence.
begin

1 M.add(r) //M is a global vector storing the reduced events
2 nodeseq = empty //nodseq stores the reduced nodes at each level
3 N = empty // N stores the sequence of nodes in next level
4 add to N the child nodes of each node in M
5 do{
6 if (N is not empty) {
7 inlevel_hdd(N, 2) //reduction in current level
8 for(each node ni in N) {//M now contains the reduced events
9 if(M.contain(ni)) { //update nodeseq with M
10 nodeseq.insert(ni)
11 }
12 else {
13 remove node ni and its subtree from the tree rooted at r}
14 } //end for
15 } // end if (N is not empty)

 N.clear() //clear N to be empty
16 add to N the child nodes of each node in M //update N
17 }while (N is not empty);

 //note Er is updated in checkEvents on triggering bug
18 return Er

19 end

procedure inlevel_hdd(N0, p)
Input N0 : the sequence of nodes need to simplify at current level
Input p : the number of partition in this simplification.
begin

20 if(length(N0) < p)
21 return
22 //partition N0 into p subsequences N1, N2, … Np

23 [N1, N2, … Np] = partition(N0, p)
24 evtseq = nodes2events(nodeseq) //map nodes (states) to events
25 for(each node nj in group Np) { //test Np first
26 evtseq.insert(eventsInSubTree(nj)) //inserts events in subtree
27 } //end for
28 if(checkEvents(evtseq)) { //execute evtseq for checking
29 M = Np //record current reduction result
30 inlevel_hdd(Np, 2) //continue finer reduction
31 return //successful reduction from Np, return
32 }
33 for(i : p-1 to 1) {

 //check the complement of the other p-1 partition
34 evtseq = nodes2events(nodeseq)
35 for(each node nj in N1 to Np except Ni) {
36 evtseq.insert(eventsInSubTree(nj))
37 }
38 if(checkEvents(evtseq)) {
39 M = merge(N1 to Np except Ni)
40 inlevel_hdd(M, p-1)
41 return; //successful reduction from complements
42 }

 } //end for
 //fail at current granularity, reduction at finer granularity

43 inlevel_hdd (Np, min(2*p, length(Np)))
44 return
45 end

46 procedure checkEvents(E0)
47 Input E0 : the sequence of events need to execute on the application.
48 Output res : whether this sequence can reproduce the crash.
49 begin
50 if E0 can trigger crash on execution {
51 Er = E0 //update Er on successful triggering crash
52 return true } // end if
53 return false //Events cannot trigger crash
54 end

300

This algorithm starts by invoking hdd(). Owing to one-one
correspondences between input events and nodes (states) in the
tree, the algorithm simplifies the nodes (states) level by level
from top to bottom (line 1 to 17). Within each level, the in-level
node simplification procedure inlevel_hdd() is called (line 7). M
is a global vector storing the current successfully reduced events,
which is updated in inlevel_hdd() (line 29 and 39). The nodseq
stores the reduced nodes at current level and is updated by M
(line 10). And, N stores the next level of nodes for reduction. The
inlevel_hdd() realizes the idea of hierarchical delta debugging
within one level until a simplest node sequence is found. It
partitions the event sequences (line 23), checks the last partition,
and performs recursive reduction if successful (line 30).
Otherwise, it tries to reduce the complement of other partitions
(line 33 to 41) with recursive calls. If it still fails, it performs
finer level reduction (line 44). The procedure checkEvents() is
responsible for execute event sequences, check whether the
crash is triggered and update Er, the final simplified event
sequence (line 46 to 54).

 There are three subroutines whose implementation is omitted
for brevity, which we explain as follows: (1) partition() (line 23),
whose function is to partition node sequence into subsequences
with equal number of nodes. (2) nodes2events() (line 24, 34)
maps the sequence of nodes to the corresponding sequence of
events. (3) eventsInSubTree() (line 26, 36), whose function is to
return all events in the subtree of a node.

D. Balanced Hierarchical Delta Debugging Algorithm
(BHDD)

 The algorithm of BHDD optimizes the HDD algorithm by
changing the subroutine partition() (i.e., line 23 of HDD
algorithm). The partition() of BHDD is to divide node sequence
in the current level into partitions with equal number of nodes
by counting the number of nodes in their sub-trees. We omit its
detailed implementation for brevity.

E. Layed Hierarchical Delta Debugging Algorithm (LHDD)

 As shown in Table 3, the algorithm lhdd() is based on hdd()
except with two optimizations. The first optimization is to add a
process of pre-selection (line 7 to 22), within which more nodes
are selected until the selected sequence of events that can trigger
a transition to next level of Activity is found. The second
optimization is to only checks the successful transition from the
last node in the local level to the first node in the next level of
Activity in checkEvents(). This saves the execution of the events
in the subtree of the last node.

 The procedure inlevel_hdd() of LHDD is the same as that of
HDD algorithm, so we omit it for brevity. However, there are
some procedures called in inlevel_hdd() that is changed for
LHDD algorithm, which we detail them here. First, the function
eventsInSubTree() for LHDD is the same as that for HDD
except that if a node is the last node, it adds only the node itself
without adding events in its subtree. Second, the function
partition() for LHDD is the same as that of BHDD by
considering of number of nodes of the subtrees, except that the
size of the last node in N is counted as 1. The difference in these
two procedures essentially reflects the local reduction logic: the
sub-tree of the last node in the current level is not considered
during reduction.

TABLE 3 THE LHDD ALGORITHM
procedure lhdd(E, r)
Input E : the sequence of events logged.
Input r : the root node of the GUI state hierarchy tree.
Output Er : the simplified event sequence.
begin

1 M.add(r) //M is a global vector storing the reduced events
2 nodeseq = empty //nodseq stores the reduced nodes at each level
3 N = empty // N stores the sequence of nodes in next level
4 add to N the child nodes of each node in M
5 do{
6 if (N is not empty) {
7 preLen = 1 //perform preselection, start at 1
8 // get the current preselected node sequence Ns

9 Ns = N[length(N) – preLen, length(N) – 1]
10 while(preLen < length(N)) {
11 evtseq = nodes2events (nodeseq) // to event sequence
12 for(each node ni in group Ns) {
13 //add sub-tree of selected nodes except the last node
14 evtseq.insert(eventsInSubTree(ni))

 } //end for
15 if(checkEvents(evtseq)) {//preselection is successful
16 break; //exit preselection
17 }
18 else { //try pre-selection with double size
19 preLen = min(2* preLen, length(N))
20 Ns = N[length(N) – preLen, length(N) – 1]
21 }
22 } // end of while, preselections stops
23 inlevel_hdd(Ns, 2) //performing in level reduction
24 for(each node ni in N) {
25 if(M.contain(ni)) { //update nodseq with M
26 nodeseq.insert(ni)
27 }
28 else {
29 remove node n and its subtree from GUI tree rooted at r
30 }
31 } //end for
32 } //end if (N is not empty)
33 N.clear() //clear N to be empty
34 add to N the child nodes of each node in M //update N
35 }while(N is not empty); //reduce at all levels
36 //Er is updated in checkEvents on triggering bug
37 return Er

38 end

40 procedure checkEvents(E0)
41 Input E0 : the sequence of event need to execute in the application.
42 Output res : whether this sequence can trigger the crash at last level

or transit to next activity successfully at middle level
43 begin
44 if(E0 contains the last event of E) { //last level, testing for crash
45 if E0 can trigger crash {
46 Er = E0 //update Er with the sequence E0

47 return true;
48 }
49 }
50 else { //not last level, testing for transition
51 If E0 can transit to the first node in the next level of Activity
52 return true; }
53 return false; //events can neither trigger crash nor transition
54 end

Finally, the procedure checkEvents() called in both lhdd()
and inlevel_hdd() is also changed (line 40 to 54), which
differentiates local check at intermediate levels and the final
check in the last level. For the local check, the algorithm only
checks the successful transition to the next Activity. For the final
check in the last level, the algorithm checks whether a crash is
triggered.

301

IV. EXPERIMENT AND RESULTS ANALYSIS

This section presents our experiment and data analysis.

A. Research Questions

RQ1: Are HDD, BHDD, and LHDD effective to reduce the
size of Android input event sequence?

RQ2: Are HDD, BHDD, and LHDD efficient when
performing test case reduction?

RQ3: If LHDD is efficient, which of the two optimizations
contributes more to its performance improvement.

B. Experimental Setup

We used a Lenovo laptop V4400 as our testing host. The
laptop was equipped with Intel i7 4702 and 16GB memory. The
operating system was Windows 10 and the Integrated
Development Environment was Eclipse. We used the Monkey
tool as our testing engine. On the phone model Mi1 the interval
between sending two events was set as 500ms and on Mi5 the
interval was set as 800ms to make sure that there was enough
time for each event to be processed.

C. Subject Program and Crash Traces

We have selected 8 real-life subject programs for our
experimental study. The descriptive statistics of the 8 subject
programs is summarized in Table 4. We have listed the program
name, a brief description of the application, the application
version, the Android OS version, the type of fault within the
application, the device hardware model used to run the tests, the
types of exceptions captured upon crash, the number of crash
traces for each application, and the range of the length of the
traces in the table. For example, Yahtzee was a mobile game
application whose program version is 1.1. The application was
running on Mi5 phone with Android OS version 2.3.3. We
injected mutant faults within the application to generate 17
crashes of type ArithmeticException, and the number of events
within the crash trace ranges from 100 to 214. The other subjects
can be interpreted similarly.

All the 8 subjects were all real-life mobile application that
had evolved for many years. Furthermore, the released versions
were often quite stable while unstable commit versions were
often hard to acquire. As a result, finding crash traces in
application releases with Monkey was not an easy task. For
DalvikExplorer, WeightChart, and Ringdroid, we were lucky
enough to find 25 crash traces with real faults. For the other 5
subjects, we had to manually create mutants by injecting faults
frequently found in mobile applications. We inserted, removed

or modified statements to inject faults. We got another 95 crash
traces from the mutant programs.

Our algorithm only worked on deterministic traces, so we
examined these 120 crash traces to check whether they can
replay stably. We manually executed each crash trace 3 times.
Then we compared their exception messages and stack traces in
the output to confirm reproducibility. We removed 19 traces,
which cannot be replayed by Monkey stably due to non-
determinism in its execution. We removed a subject called
Sanity and its 7 crash traces because replaying it stably requires
resetting its data before each execution, which was not supported
by the current implementation of SimplyDroid. We removed 2
versions of WhoHasMyStuff because the interaction with the
application may sometimes activate the soft input keyboard,
which changed the layout of the GUI. As a result, the coordinate-
sensitive Monkey cannot replay them. Finally, the 92 crash
traces left were all used in our data analysis.

To facilitate identification of the GUI state hierarchy, we had
also enhanced Monkey tool to log the application GUI states (i.e.,
Activity ID in this work) during testing. Therefore, our crash
traces contained not only the sequence of input events but also
their corresponding GUI states.

D. Experimental Procedure

We also realized the classic Delta-Debugging (DD)
algorithm as a benchmarking technique for comparison. We
performed test case reduction on all the 92 crash traces with DD,
HDD, BHDD, and LHDD algorithms. We logged the size of the
reduced test cases as well as the time for reduction for each
technique on each trace. Since there are two major optimizations
in the LHDD algorithm (i.e,, the pre-selection and the local
reduction), we wonder which optimization contributes more in
its performance improvement. So we turned off the pre-selection
optimization in the LHDD (i.e., using the local reduction
optimization only) to form a new technique LHDD-NoPre for
comparison with LHDD. We also used LHDD-NoPre to perform
test case reduction on the 92 crash traces and log their reduction
results.

E. Experimental Results and Analysis

In this section, we present our experimentation results
followed by detailed results analysis for each research question.

1) Answering RQ1: In this section, we would like to know
whether our proposed HDD techniques are effective to reduce
the size of Android input event sequence.

TABLE 4 SUBJECT PROGRAMS

Subject Subject Description
Program
Version

Android
Version

Fault
Type

Device Exception Type
Number of
crash traces

Crash Trace
Length

Yahtzee Game 1.1 2.3.3 Mutant Mi5 ArithmeticException 17 100-214
K9mail Mail 5 2.3.3 Mutant Mi5 NullPointerException 23 150-621

DalvikExplorer
System information

Viewer
3.4 4.1.2 Real Mi1

ActivityNotFound &
OutOfMemoryError

11 36-1525

WeightChart Weight recorder 1.0.4 2.3.3 Real Mi1 ActivityNotFound 8 16-765
Ringdroid Ringtone editor 2.6 4.1.2 Real Mi1 RuntimeException 6 314-885

Tippy Calculator 1.1.3 2.3.3 Mutant Mi5 ArithmeticException 9 31-162
SyncMyPic Photo synchronizer 0.15 2.3.3 Mutant Mi5 ArithmeticException 8 27-462

WhoHasMyStuff Item lending helper 1.0.7 4.4.2 Mutant Mi5 RuntimeException 10 50-679

302

We have shown the length of the crash traces after reduction
by each technique in Table 5. For each trace, we show its number,
the original length of the crash trace before reduction and the
length of the reduced crash trace for DD, HDD, BHDD, and
LHDD, each in one row. Since there are too many traces (92 in
total) to be shown, we have to wrap around the results at number
47 within the subject DalvikExplorer. We also listed the results
of LHDD without pre-selection (LHDD-NoPre) in the last row
for comparison purpose, which we will discuss when answering
RQ3.

When compared with the original crash trace length, all the
techniques achieve significant test case reduction rates. Except
for a few outlier cases, most of these techniques achieve
reduction rates of more than 90%. Furthermore, the actual length
of crash traces after reduction is small for most of the cases. Thus
we can answer RQ1 that the HDD techniques are effective to
reduce the size of crash.

There are 3 crash traces (No. 28 and No. 40 of K9mail, No.
58 of WeightChart, in grey) where the family of HDD
techniques generate larger reduced test case than DD technique.
We have inspected these 3 crash traces carefully and found that
this is due to the imprecise logging of application states in our
enhanced Monkey. For K9mail, a popup window interferes with
the current Activity; for WeightChart, a System Activity
misleads our logger. We will improve our state logger in future
work.

Despite these exceptional cases, the family of HDD
techniques (HDD, BHDD, LHDD) in general has statistically
comparable reduction effectiveness as the DD technique. We
have performed ANOVA test to check whether the 4 different
techniques (DD, HDD, BHDD, LHDD) have significant
difference from each other. The ANOVA return a p-value more
than 0.1, which cannot reject the null hypothesis at 0.05
significance level. Therefore, there is no significant difference
among these 4 techniques in terms of reduction effectiveness.

2) Answering RQ2: In this section, we would like to know
whether the family of HDD techniques is efficient such that

developers need not to wait for a prolonged period to get a
reduced test case.

The test case reduction time for the 8 subject programs are
shown in Fig. 6 to Fig. 13. Within each figure, the x-axis shows the
crash traces number and the y-axis shows the test case reduction
time in seconds. For some programs, the difference in reduction
time between different crash traces is so big that we have to show
the results in the log scale for y-axis.

We can see from the plots that in general the LHDD
algorithm performs the best while the DD algorithm performs
the worst. In fact, for majority of crash traces, the time saving of
the LHDD technique compared to the DD technique is
significant. For example, for crash trace No. 5 of WeightChart,
DD takes 10 hours (36223 seconds) whereas LHDD takes only
less than 7 minutes (413 seconds). When averaged over the 92
crash traces, HDD, BHDD, and LHDD save 4.6, 9.8, and 16
minutes over DD per trace, respectively. In total, HDD, BHDD,
and LHDD save around 7, 15 and 25 hours of debugging time
over DD on all 92 crash traces, respectively.

TABLE 6 SUMMARY OF TEST CASE REDUCTION EFFICIENCY

> DD HDD BHDD
Count Percentage Count Percentage Count Percentage

HDD 55 60% \ \ \ \
BHDD 75 81% 71 77% \ \
LHDD 86 93% 84 91% 74 80%

The reduction efficiency from DD to HDD and then to

BHDD and finally LHDD appears to increase gradually. For
each pair of techniques, we have computed the number and
percentage of crash traces where the former uses less test case
reduction time (in other words, better “>”) than the later as
shown in Table 6. HDD is more efficient than DD on 55 out of
92 cases. The percentage of crash traces where BHDD is more
efficient than DD and HDD are 81% and 77%, respectively.
LHDD is more efficient than DD, HDD, and BHDD on 93%,
91%, and 80% of the crash traces, respectively.

TABLE 5 LENGTH OF CRASH TRACE (TEST CASE) AFTER REDUCTION

Subjects Yahtzee K9mail DalvikExplorer

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 4243 44 45 46

Original 168 196153214 131100101 110121121 126128111 134123107110171156587216621269184193275216366266217261272215220202154216 150269180 36 75 1173079501525

DD 8 7 7 8 7 7 9 7 7 7 9 7 8 7 7 7 7 6 5 7 4 4 4 4 7 5 4 5 5 8 5 5 6 5 4 4 5 7 8 5 4 4 4 4 4 4

HDD 7 9 10 9 8 8 8 7 8 9 7 10 9 9 7 10 7 10 6 5 7 5 5 4 8 6 6 7 5 9 5 8 6 4 8 4 6 4 10 7 4 4 4 4 4 4

BHDD 8 9 10 8 8 8 7 7 8 8 8 10 11 10 8 8 8 7 5 5 7 5 5 4 12 5 7 6 4 11 6 6 6 4 5 5 5 6 9 10 4 4 4 4 4 4

LHDD 7 8 7 8 7 8 7 7 8 8 8 7 8 7 7 9 8 7 7 6 6 9 6 4 6 6 5 17 6 11 10 9 6 5 5 5 9 6 7 13 4 4 4 4 4 4
LHDD
-NoPre

7 8 7 8 7 9 7 7 7 7 7 7 7 7 7 7 7 10 9 5 6 8 7 6 6 6 4 15 13 12 8 8 5 4 4 4 11 4 7 12 4 4 4 4 4 4

Subjects DalvikExplorer WeightChart Ringdroid Tippy SyncMyPic WhoHasMyStuff

No. 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 8889 90 91 92

Original 1359397404265 294 16 46 521514239 765448220 885449550314646706 70 76 63 31 102129162 46 99 45 426 89 154177462 27 44 132 78 306353 472 50 217679149 231

DD 4 4 9 4 4 9 5 5 9 5 5 5 5 8 8 7 7 7 7 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 6 6 5 6 6 5 6 6 5 6

HDD 4 4 11 4 4 7 9 8 8 7 8 19 7 7 7 7 7 7 7 4 4 6 4 4 4 4 4 4 4 5 4 4 6 9 4 3 6 6 5 7 6 5 6 7 5 6

BHDD 4 4 11 4 4 9 5 8 8 7 8 18 7 7 7 7 7 7 7 4 4 6 4 4 4 4 4 4 4 5 4 4 6 9 4 3 6 6 5 6 6 5 6 7 5 6

LHDD 4 4 13 4 4 5 6 8 9 7 8 14 9 7 7 7 6 8 7 4 4 6 4 4 4 4 4 4 4 5 4 4 5 9 4 3 6 6 5 6 6 5 6 7 5 6
LHDD
-NoPre 5 4 12 4 4 5 7 7 11 10 14 21 10 7 7 7 6 7 7 4 4 5 4 4 4 4 4 4 4 5 4 4 6 8 4 3 6 6 5 6 6 5 6 7 5 6

303

Fig. 6 Test Case Reduction Time for DalvikExplorer Fig. 7 Test Case Reduction Time for WeightChart

Fig. 8 Test Case Reduction Time for RingDroid Fig. 9 Test Case Reduction Time for Tippy

Fig. 10 Test Case Reduction Time for SyncMyPic Fig. 11 Test Case Reduction Time for WhoHasMyStuff

Fig. 12 Test Case Reduction Time for Yahtzee

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11

Te
s

t
C

a
se

 R
e

d
u

c
ti

o
n

 T
im

e
 (

s
ec

o
n

d
s)

Crash Traces

DalvikExplorer

DD HDD BHDD LHDD-NoPre LHDD

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 Te
s

t
C

as
e

R
e

d
u

c
ti

o
n

 T
im

e
 (

se
c

o
n

d
s

, i
n

 l
o

g
 s

c
al

e
)

Crash Traces

WeightChart

DD HDD BHDD LHDD-NoPre LHDD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6

Te
st

 C
as

e
R

ed
u

ct
io

n
 T

im
e

(s
ec

o
n

d
s)

Crash Traces

Ringdroid

DD HDD BHDD LHDD-NoPre LHDD

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9
Te

st
 C

a
s

e
 R

e
d

u
c

ti
o

n
 T

im
e

 (
s

e
c

o
n

d
s

)

Crash Traces

Tippy

DD HDD BHDD LHDD-NoPre LHDD

1

10

100

1000

10000

1 2 3 4 5 6 7 8

Te
s

t
C

as
e

R
e

d
u

c
ti

o
n

 T
im

e
(s

ec
o

n
d

s:
 in

 lo
g

 s
ca

le
)

Crash Traces

SyncMyPic

DD HDD BHDD LHDD-NoPre LHDD

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Te
st

 C
as

e
 R

ed
u

c
ti

o
n

 T
im

e
 (

in
 lo

g
 s

c
a

le
)

Crash Traces

WhoHasMyStuff

DD HDD BHDD LHDD-NoPre LHDD

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Te
st

 C
a
se

 R
e
d

u
ct

io
n

 T
im

e
 (

se
c
o

n
d

s
)

Crash Traces

Yahtzee

DD HDD BHDD LHDD-NoPre LHDD

304

There are a few exception cases where LHDD is slower to
perform reduction than DD. We have examined those cases to
understand the reasons behind. For example, the crash trace No.
1 and No. 6 of Ringdroid optionally popped up an AlertDialog,
which hided the underlying Activity. This situation made our
Monkey tool unable to log the correct GUI states. Similarly, the
crash trace No. 5 and No. 16 of K9mail popped ups floating
windows during execution, which made our Monkey tool unable
to log the same GUI states each time. This in turn disrupted the
reduction process of LHDD.

Despite those exceptional cases, we can see from our results
that this family of HDD techniques increasingly improves the
efficiency of DD (where LHDD > BHDD > HDD > DD) without
significant loss of reduction effectiveness.

3) Answering RQ3: For our LHDD algorithm, there are two
optimizations to improve its performance. In this section, we
would like to find out how much each optimization has
contributed to the overall optimization. To perform the
comparison, in the experiment, we turned off the pre-selection
optimization in LHDD so that we can see the impact of each
factor with comparison.

In Table 5, the rows of LHDD-NoPre show the reduction
results of LHDD without pre-selection. We can see that in
general, the reduction effectiveness of LHDD-NoPre is close to
LHDD. A further ANOVA analysis also confirms that there is
no significant difference between LHDD-NoPre and LHDD in
terms of the size of reduced test case.

However, as shown in Fig. 6 to Fig. 13, the test case reduction
time of LHDD-NoPre is larger than LHDD on most crash traces.
We further count the number of crash traces where LHDD
performs better than LHDD-NoPre. We found that there are 83
out of the 92 (i.e., 90%) crash traces on which LHDD performs
better. Furthermore, if we compare LHDD-NoPre with its base
technique BHDD (note their partition() routine is the same),
there are 60 out of the 92 (i.e., 65%) crash traces on which

LHDD-NoPre outperforms. This result shows the performance
of LHDD-NoPre lies in between BHDD and LHDD. Therefore,
we can answer RQ3 that both optimizations (local reduction and
pre-selection) contribute to the performance improvement of
LHDD.

F. Threats to Validity

We focused on improving the efficiency of test case
reduction technique rather than dealing with the impact of non-
determinism in execution. Therefore, we selected stable crash
traces to perform test case reduction. We leave the handling of
non-deterministic crash traces as a future work.

The definition of state equivalence also has an impact on the
test case reduction. Currently, our trace representation uses the
Activity ID to represent the GUI state, which is a lightweight
solution. Using a finer level of GUI state equivalence to build
the GUI hierarchy tree may lead to different test case reduction
results. However, the logging of state will also become
expensive. We will leave the exploration of this trade-off in
future work.

We use Java to realize our SimplyDroid tool. We have
carefully performed code review and testing on our
implementation to ensure their correctness. We used 8 subjects
and 92 crash traces to evaluate our SimplyDroid platform.
Additional studies on more real-life crash traces will further
strengthen the validity of our study.

In our experiment, we removed Sanity and its 7 crash traces
because replaying it stably requires resetting its data before each
execution. To enhance the applicability of SimplyDroid, we may
perform reinstallation of the application or reload a system
snapshot with the emulator before each execution.

V. RELATED WORK

In this section, we will briefly review related works,
including debugging techniques, Android testing techniques,
and test case reduction techniques.

Fig. 13 Test Case Reduction Time for K9mail

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Te
st

 C
as

e
R

e
d

u
ct

io
n

 T
im

e
(s

ec
o

n
d

s
, i

n
 lo

g
 s

ca
le

)

Crash Traces

K9mail

DD HDD BHDD LHDD-NoPre LHDD

305

A. Debugging Techniques

Fault localization is a time consuming. Program slicing
[11][14][23][28] can confine the search range to a program slice
instead of the entire program. A program slice can be obtained
statically [24] or dynamically [1]. Spectrum-based fault
localization correlates failures against problem spectra
[13][21][22], which provides correlation information on
program entities for users to review.

There are other techniques for fault localization, such as
statistical methods to locate bugs with instrumented predicates
[16], state-based methods that use variables and values, and
even machine learning-based techniques that train neural
networks to construct models for fault localization [4][5].

B. Android Application Testing Technique

There are also many techniques proposed for Android
application testing.

Model based testing techniques first build a model for the
application under test and then generate test cases based on the
model [10]. Amalfitano et al. [2] proposed a crawler-based
technique to build a GUI model and generate input events.
PUMA [12] is a dynamic analysis framework and test case
generation tool with generic design. Choi et al [7] proposed the
SwiftHand tool to minimize the number of application restart
during testing. Azim et al. [3] proposed the A3E tool with two
complementary GUI traversal strategies: A3E-Depth-First and
A3E-Targeted.

Monkey is a well-known Android application random
testing tool developed by Google and has been widely adopted
in stress testing and reliability testing [40]. Dynodroid is
another automated testing tool with strategy similar to Monkey,
yet with more sophisticated strategies [17]. Sapienz is a multi-
objective and search-based Android application-testing tool
whose optimization goal includes both code coverage rate and
fault detection rate [18].

There are also several test development platforms, such as
MonkeyRunner [36], Robotium [37], and UIAutoMator [29],
for developers to write customized test scripts.

C. Test Case Reduction

The goal of test case reduction or minimization is to find a
minimal subset of inputs that can still produce the same failure.

Delta Debugging [25] is a method to automate the debugging
of programs using the hypothesis-trial-result loop [32].
Simplification and isolation are two major algorithms of Delta
Debugging [27]. DDMIN is direct realization of simplification
algorithm [27], whose goal is to find a minimal subset of inputs
that each element of it is necessary for reproducing the failure so
that it cannot be removed.

For test case reduction of Android application, Clapp et al.
[9] proposed the Non-Deterministic Delta Debugging
Minimization (ND3MIN) algorithm. ND3MIN improved the
DDMIN algorithm by handling the non-deterministic execution
of Android input event sequence. It adopts a probability
approach by executing each candidate reduction many times and
only considers this candidate successful if its success rate
exceeds a threshold. Our SimplyDroid tool differs from

ND3MIN in two aspects. First, they have different reduction
goals. SimplyDroid tries to reproduce a crash or failure while
ND3MIN tries to find a minimal event trace that can reach a
given target Activity. Second, SimplyDroid mainly addresses
the problem of test case reduction efficiency, whereas ND3MIN
mainly addresses the problem of non-deterministic execution.

D. Simplification of Test Case with Structures

DDMIN is based on test cases of string input so that the
minimal independent element of simplification is a single
character. Based on DDMIN, the Berkeley Delta algorithm [31]
uses a line of text as the basic unit in reduction. C-Reducer can
simplify large C programs [30]. It shares the same basic idea
with Delta Debugging, but uses a modularized strategy of
deletion and simplification based on the grammar tree
representation of the program source code [20].

Apart from C/C++ programs, there are also many test cases
artifacts with explicit hierarchical structure characteristics such
as HTML and XML files. Misherghi and Su proposed the
original Hierarchical Delta Debugging algorithm to realize the
simplification of C/C++ programs and HTML/XML files [19].
Utilizing the hierarchical structure information of the test input,
their hierarchical delta debugging algorithm can be much more
efficient than the standard DD algorithm.

VI. CONCLUSION AND FUTURE WORK

There are many automated test case generation techniques to
ensure the quality of Android applications. The Monkey fuzz
testing tool and its improved versions are simple, effective and
widely adopted in the industry. The test cases generated by
Monkey often contain a large number of input events, which are
difficult to be used by developers in debugging. It is desirable to
simplify the input event sequence as small as possible while
triggering the same failure. However, the traditional delta
debugging technique is slow to perform such simplification. We
observe that the events within a failure-inducing trace have
hierarchical relationships in the form of user interaction sessions
that can be reduced together with high probability. In this work,
we have proposed SimplyDroid, a crash trace simplification tool
for Android applications. We have proposed a novel GUI state
hierarchy tree as trace representation and a family of 3
hierarchical delta debugging algorithms to operate on this trace
representation. Our experiments on 92 crash input traces on eight
real-life Android applications show that techniques in this family
are increasingly more efficient to perform test input reduction.

For future work, we will further study the non-deterministic
execution problem in the context test case reduction. We will
also perform empirical study to explore the impact of state
equivalence on test case reduction.

 REFERENCES
[1] H. Agrawal, J. R. Horgan. Dynamic Program Slicing. In Proceedings of

the ACM SIGPLAN'90 Conference on Programming Language Design
and Implementation, pp. 246-256, White Plains, New York, 1990.

[2] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, A. M. Memon,
MobiGUITAR – a tool for automated model-based testing of mobile apps.
IEEE Software, 32(5):1-1, 2014.

[3] T. Azim, I. Neamtiu, Targeted and Depth-first Exploration for Systematic
Testing of Android Apps. In Proceedings of the 2013 ACM SIGPLAN

306

International Conference on Object Oriented Programming Systems
Languages & Applications (OOPSLA2013), New York, NY, USA: ACM,
pp. 641–660, 2013.

[4] L.C. Briand, Y. Labiche, X. Liu. Using Machine Learning to Support
Debugging with Tarantula. In Proceedings of the 18th IEEE International
Symposium on Software Reliability, pp. 137-146, Trollhattan, Sweden,
2007.

[5] Y. Brun, M. D. Ernst. Finding Latent Code Errors via Machine Learning
over Program Executions. In Proceedings of the 26th International
Conference on Software Engineering, pp. 480- 490, Edinburgh, UK, 2004.

[6] Y. Chen. Improving the Utility of Compiler Fuzzers, Utah, USA: The
University of Utah, 2013.

[7] W. Choi, G. Necula, K. Sen, Guided GUI Testing of Android Apps with
Minimal Restart and Approximate Learning. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications (OOPSLA2013), New
York, NY, USA: ACM, 2013, pp. 623–640, 2013.

[8] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso.
Automated Test Input Generation for Android: Are We There Yet? (E).
In Proceedings of the 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE) (ASE '15). IEEE Computer
Society, Washington, DC, USA, 429-440, 2015.
DOI=http://dx.doi.org/10.1109/ASE.2015.89

[9] L. Clapp, O. Bastani, S. Anand, A. Aiken. Minimizing GUI event traces.
In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2016). ACM,
New York, NY, USA, 422-434. 2016.

[10] M. C. Gaudel. Testing can be formal, too. In P.D. Mosses, M. Nielsen,
M.I. Schwartzbach (Eds.), tapsoft '95: Theory and Practice of Software
Development. Lecture Notes in Computer Science, number 915, Springer-
Verlag, Heidelberg, pp. 82-96, 1995.

[11] T. Gyimothy, A. Beszedes, I. Forgacs. An Efficient Relevant Slicing
Method for Debugging. In Proceedings of 7th European Software
Engineering Conference and 7th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 303-321,
Toulouse, France, September 1999.

[12] S. Hao, B. Liu, S. Nath, W. G. Halfond, R. Govindan, PUMA:
Programmable UI-automation for large-scale dynamic analysis of mobile
apps. In Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys2014), New York,
NY, USA: ACM, pp. 204–217, 2014.

[13] J. A. Jones, M. J. Harrold. Empirical Evaluation of the Tarantula
Automatic FaultLocalization Technique. In Proceedings of the 20th
IEEE/ACM Conference on Automated Software Engineering, pp. 273-
282, Long Beach, California, USA, 2005.

[14] B. Korel. PELAS – Program Error-Locating Assistant System. IEEE
Transactions on Software Engineering, 14(9):1253-1260, 1988.

[15] B. Korel, S. Yalamanchili. Forward Computation of Dynamic Program
Slices. In Proceedings of the 1994 ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 66-79, Seattle,
Washington, 1994.

[16] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, M. I. Jordan. Scalable
Statistical Bug Isolation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp.
15-26, Chicago, Illinois, USA, 2005.

[17] A. Machiry, R. Tahiliani, M. Naik, Dynodroid: An Input Generation
System for Android Apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2013), New York,
NY, USA: ACM, pp. 224–234, 2013.

[18] K. Mao, M. Harman, Y. Jia. Sapienz: multi-objective automated testing
for Android applications. In Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA2016), ACM, New
York, NY, USA, pp. 94-105, 2016.

[19] G. Misherghi, Z. Su. HDD: Hierarchical Delta Debugging. In Proceedings
of the 28th International Conference on Software Engineering. Shanghai,
China: ACM, pp. 142-151, 2006.

[20] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-case
Reduction for C Compiler Bugs. In Proceedings of the 2012 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, Beijing, China: ACM, pp. 335-346, 2012.

[21] M. Renieris, S. P. Reiss. Fault Localization with Nearest Neighbor
Queries. In Proceedings of the 18th IEEE International Conference on
Automated Software Engineering, pp. 30-39, Montreal, Canada, October
2003.

[22] T. Reps, T. Ball, M. Das, J. Larus. The Use of Program Profiling for
Software Maintenance with Applications to the Year 2000 Problem. In
Proceedings of the 6th European Software Engineering Conference, pp.
432-449, Zurich, Switzerland, September, 1997.

[23] M. Weiser. Programmers use Slices when Debugging. Communications
of the ACM, 25(7):446-452, 1982.

[24] M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
SE-10(4):352357, 1984.

[25] A. Zeller. Yesterday, my program worked. Today, it does not. Why?. In
ACM SIGSOFT Software Engineering Notes, pp. 253-267, Volume 24
Issue 6, 1999.

[26] A. Zeller. Isolating Cause-Effect Chains from Computer Programs. In
Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of
Software Engineering, pp. 1-10, Charleston, South Carolina, USA, 2002.

[27] A. Zeller, R. Hildebrandt. Simplifying and Isolating Failure-Inducing
Input. IEEE Transactions on Software Engineering, 28(2): 183-200, 2002.

[28] X. Zhang, R. Gupta, Y. Zhang. Precise Dynamic Slicing Algorithms. In
Proceedings of the 25th IEEE International Conference on Software
Engineering, pp. 319-329, Portland, Oregon, USA, 2003.

[29] Android uiautomator. http://developer.android.com/tools/help/
uiautomator/index.html.

[30] C-Reduce. http://embed.cs.utah.edu/creduce/, last access, 2017.

[31] Delta. http://delta.tigris.org/, last access, 2017.

[32] Delta Debugging, https://en.wikipedia.org/wiki/Delta_Debugging, Last
access, 2017.

[33] Garnter. Worldwide smartphone sales to end users by operating system in
3Q16. http://www.gartner.com/newsrboom/id/3516317.

[34] Google Play. The Google Play application market.
https://play.google.com/store?hl=en.

[35] Mobile Testing Center of Baidu. http://mtc.baidu.com, last access, 2017.

[36] Monkeyrunner. http://www.android-
doc.com/tools/help/monkeyrunner_concepts.html.

[37] Robotium. https://github.com/RobotiumTech/robotium.

[38] Statista. Number of available applications in the Google Play Store from
December 2009 to December 2016.
https://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store/.

[39] Testin. www.Testin.cn, last access, 2017.

[40] The Monkey UI android testing tool.
http://developer.android.com/tools/help/monkey.html.

[41] UTEST platform of Tencent. http://utest.qq.com, last access, 2017.

307

