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Abstract—To ensure the quality of Android applications, many 
automatic test case generation techniques have been proposed. 
Among them, the Monkey fuzz testing tool and its variants are 
simple, effective and widely applicable. However, one major 
drawback of those Monkey tools is that they often generate many 
events in a failure-inducing input trace, which makes the follow-
up debugging activities hard to apply. It is desirable to simplify or 
reduce the input event sequence while triggering the same failure. 
In this paper, we propose an efficient event trace representation 
and the SimplyDroid tool with three hierarchical delta-debugging 
algorithms each operating on this trace representation to simplify 
crash traces. We have evaluated SimplyDroid on a suite of real-life 
Android applications with 92 crash traces. The empirical result 
shows that our new algorithms in SimplyDroid are both efficient 
and effective in reducing these event traces. 

Index Terms—Test case reduction, delta debugging, event 
sequence reduction, Android 

I.  INTRODUCTION  

The mobile Internet industry has witnessed an explosive 
growth in recent years. Both the number and the complexity of 
mobile applications have increased rapidly. According to 
Gartner [33], the Android OS has taken 87.8% of the smart 
phone market share in the 3rd quarter of 2016. In Google Play 
[34], there are more than 2.6 million Android applications [38]. 

To increase the satisfaction of end-users, mobile application 
developers must improve the quality of their applications. 
Mobile testing is one important measure to achieve this goal. 
Different kinds of testing techniques [8] have been proposed to 
test Android applications, including fuzz testing, GUI traversal-
based testing [3][17], and search-based testing [18]. Fuzz testing 
is represented by the family of Monkey tools, which includes the 
built-in Monkey tool of Android OS and its improved versions 
by third party. Owing to their simplicity, effectiveness, and wide 
applicability, the improved monkey tools are widely adopted by 
cloud-based mobile testing platforms [35][39][41]. 

A major limitation of these fuzz testing techniques is that 
they often generate a large number of input events before 
triggering a failure, which makes follow-up debugging tasks 

hard to apply. In such scenarios, simplifying input event 
sequence that triggers the same failure is desirable.  

Delta debugging (DD) [27] has been applied to perform such 
test input reductions on traditional applications, Web 
applications, and compilers, etc. There are also research works 
on reducing input event sequences for Android applications with 
the emphasis on handling execution non-determinism based on 
the idea of DD [9]. Nonetheless, in general, DD techniques are 
slow to generate the reduced input. The problem with the DD 
strategy is that its partition strategy is unaware of the presence 
of interaction sessions of input events with end users, which may 
lead to large number of unsuccessful trials (i.e., fail to trigger 
failure) in the reduction process. 

Hierarchical Delta Debugging [19] improves the efficiency 
of DD by revealing the hierarchical structures of test cases and 
applying DD according to such structures. We observe that an 
Android input event sequence can be structured hierarchically 
based on interaction sessions and sub-session with users. 

Our insight into the events trace reduction problem is that a 
long input event sequence often contains sub-sequences 
representing small interactive sessions with the end users. These 
sessions of events forms a natural boundary for reduction as they 
can often be reduced together with high probability. We further 
observe that the relationship of input events is reflected in the 
hierarchical relationship of their corresponding GUI states. Thus, 
we seek to find the hierarchical relationships between input 
events by building and analyzing the GUI state hierarchy tree as 
trace representation. 

Based on the trace reprsentation, we further propose an input 
event sequence simplification tool SimplyDroid, which contains 
a family of three test case reduction algorithms based on the 
notion of hierarchical delta debugging coined as Hierarchical 
Delta Debugging (HDD), Balanced Hierarchical Delta 
Debugging (BHDD), and Local Hierarchical Delta Debugging 
(LHDD) each operating on the above trace representation. The 
HDD algorithm is an adaption of the existing notion of 
hierarchical delta debugging to show the applicability of our 
trace representation. Both BHDD and LHDD are our new HDD 
algorithms that use the structural property of the trace 
representation to improve the reduction efficiency without 
significant loss of reduction effectiveness.  

We have used 92 input traces with crash occurrences from 8 
real-life Android applications with real and seeded faults to 
evaluate the SimplyDroid tool. The experimental results show 
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that all the three techniques have improved reduction efficiency 
over the classic DD technique without loss of effectiveness. 
Furthermore, LHDD is significantly more efficient than DD, 
HDD and BHDD, which makes it competitive to apply. 

The contribution of this paper is three-fold. First, it presents 
a novel GUI state hierarchy tree representation to model an 
Android input event trace. Second, it proposes the first family of 
efficient HDD algorithms for simplifying Android input event 
traces. Third, it reports the first comprehensive experiment on 92 
crash traces of 8 real-world Android applications that evaluates 
the effectiveness and efficiency of our family of HDD 
algorithms and trace representation. 

The organization of the remaining sections is as follows. In 
Section II, we present a motivating example to illustrate our key 
ideas. In Section III, we present our tool SimplyDroid 1 as well 
as the family of input sequence reduction algorithms. Section IV 
reports a comprehensive experimental study, in which we have 
evaluated the effectiveness and efficiency of our family of HDD 
algorithms operating on our trace representation, followed by the 
related work in Section V. Finally, we conclude our work in 
Section VI. 

II. MOTIVATING EXAMPLE 

This section presents a motivating example of our work. 

A. GUI State Hierarchy Tree as Trace Representation 

To understand the hierarchical structure of GUI input events, 
we have to build a partial GUI state hierarchy tree and map the 
input events to it. Here “partial” means the GUI hierarchy tree 
only reflects those parts of the GUI hierarchy related to the 
current input event sequence for simplification. Fig. 1 shows the 
GUI state hierarchy tree built from a real crash trace from the 
Android application DalvikExplorer.  

When building the GUI state hierarchy tree, we use the 
hierarchical relationship of GUI states to identify the 
hierarchical relationship of their corresponding events. In this 
state hierarchy tree, each node with number i not only represents 
the event i in the crash trace, but also represents the GUI state 
before processing the event i.  An edge in the GUI state 
hierarchy tree represents the parent-child (hierarchical) 
relationship between the two corresponding GUI states. 

If a new node n with a state different from any nodes on the 
path from the root node to its previous node, then the node n is 
defined as a child node of its previous node; otherwise, the node 
n is defined as a new (and right) sibling node of the equivalent 
node having the same state as n. In Fig. 1, within the state 
hierarchy tree, we use the same color to represent equivalent 
states (sibling) and the last node without any index to stand for 
state “crash”. With the GUI hierarchy tree construction process, 
new events will always grow at the rightmost sub-tree. Thus, 
the crash node (i.e., the last event of the event sequence) is 
always the rightmost node at the bottom level of the rightmost 
sub-tree of the whole tree. Furthermore, the parent and the 
ancestors of the crash node are always the last nodes in their 
corresponding levels.  

We have built an enhanced Monkey tool to log the 
application GUI states during testing. The definition of GUI state 
can have different granularities. In the current version of 
SimplyDroid, we use an Activity ID to represent a GUI state, 
which is a lightweight solution. Using a finer level of GUI state 
(e.g., GUI structure) definition may lead to different reduction 
results, whose tradeoff is interesting to explore in the future.  

Therefore, our crash traces contain not only the sequence of 
input events but also the corresponding GUI states. More 
specifically, our crash trace of events is in the form e1, e2, …, 
en, and it corresponds to the GUI state trace s1, s2, …, sn-1, sn, 

crash state. Upon receiving event ei, the state si  transits to si+1.  

The GUI state hierarchy tree is constructed as follows. For 
each state si and event ei with the same number i, a new node n 
is constructed. Then node n is compared with each node (state) 
m from root to its previous node si-1 in turn. If si is equal to any 
node m, node n is added as a sibling node of m. Otherwise, n is 
added as a child node of node si-1. The tree construction 
algorithm will be presented in Section III.  

 
Fig. 1 GUI state hierarchy tree of an exemplified trace 

B. The Reduction Process of Classic DD 

The Delta Debugging (DD) algorithm makes no use of the 
hierarchical relationships of GUI states [27]. It partitions an 
input event sequence into subsequences with equal size, and 
performs reduction with increasingly finer granularity. For the 
exemplified crash trace of length 36, in our experiment, the DD 
algorithm used 38 trial executions by spending 3 minutes and 
15 seconds before getting the final reduced test input sequence 
1, 22, 23, 36. We observed that many of these 38 trial 
executions generated invalid traces, which wasted efforts. 

C. The Reduction Process of HDD 

 
Fig. 2 Intermediate reduction attempts of HDD 

The idea of HDD is to perform the reduction from a higher 
level to a lower level on a GUI state hierarchy tree. In this way, 
the sub-trees of a node can be reduced together, leading to 

1 The SimplyDroid tool is open source at https://github.com/gongbell/SimplyDroid  
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higher reduction efficiency. Within each level, the reduction 
strategy of HDD is similar to DD. Fig. 2 shows the reduction 
attempts of HDD within level 1. While processing level 1, HDD 
equally partitions the node set (2, 7, 17, 18, 21, 22) shown in 
Fig. 1 into two parts (2, 7, 17) and (18, 21, 22). It tries to remove 
one part or the other. As a result, the result for the first round of 
reduction is shown in Fig. 2(a). We can see that those nodes (2, 
7, 17) and their sub-trees are all eliminated in one round. Then 
the node set (18, 21, 22) becomes the input for the next iteration 
of reduction. This node set is again partitioned into two parts 
(18, 21) and (22) for reduction. The result for the second round 
of reduction is shown in Fig. 2(b). The reduction at level 1 stops 
because there is only one node numbered 22 remained. Then the 
reduction at levels 2 and 3 continue iteratively. Finally, HDD 
used 6 trial executions by spending 64 seconds to get the same 
reduction result 1, 22, 23, 36 as DD. We can see from the 
reduction process that HDD is more efficient than DD. 

D. The Reduction Process of BHDD 

BHDD is based on the insight that many GUI state hierarchy 
trees in real-world scenarios are imbalanced: sub-trees with 
more nodes tend to stay at one side. These trees may make HDD 
to spend more execution trails on reducing small node sets. 
BHDD takes the size of whole sub-tree rooted at each node into 
consideration, and thus has the potential to reduce more nodes 
in each round of execution trial than HDD. 

As shown in Fig. 3, we label the size of the sub-tree for each 
node at level 1. The partition strategy of BHDD tries to make 
the total number of nodes in each partition as close as possible. 
Thus, the first round of partition for BHDD generates node sets 
(2, 7, 17, 18) and (21, 22). The former has a total of 19 nodes 
and the latter has a total of 16 nodes. In this way, for an 
imbalanced tree, BHDD may reduce more events in each round. 
For the example trace, BHDD used 43 seconds with 6 trial 
executions to get the same reduction result as DD.  

 
Fig. 3 Partition strategy of BHDD 

E. The Reduction Process of LHDD 

As discussed in Section II A, the parent and the ancestors of 
the crash node are always the last nodes (e.g., node 22 and 23) 
in their corresponding levels. We can see from the GUI 
hierarchy tree of the example that these ancestor nodes of the 
crash node (e.g., node 22 and 23) are critical because at these 
nodes, the application under test transits to the next level of GUI 
state closer to the crash node. Based on this observation, the 
LHDD algorithm adopts a heuristic: reducing the sequence of 
events as long as the transition from the last node of one level 

to the first node of its next level is preserved. For the 
exemplified GUI tree in Fig. 1, we need only to check whether 
the transition 22,23 is successful at (blue) level 1 (Fig. 4(b)) 
and the transition 23, 24 is successful at (orange) level 2. At 
the bottom level, LHDD checks for crash occurrence.  

In this way, we effectively convert the reduction process 
from a global optimization problem into a “partial” local 
optimization problem. By “local”, we mean that the reduction 
process needs not check the sub-tree of the last node, and by 
“partial” we mean that the subtree of nodes other than the last 
node should still be checked. For example, when reducing at 
level 1 (blue nodes), LHDD does not include the subtree rooted 
at node 22 for checking (i.e., local), but includes the subtrees 
rooted at 2, 17 and 18 for checking (i.e. partial local). In our 
experience, the subtree of the last node is often large in size. In 
such scenarios, intuitively, LHDD saves a lot of time. 

To further optimize the local reduction process, LHDD 
adopts another heuristic before performing the DD reduction at 
each level. Since the reduced event sequence at current level 
must include the last node, it incrementally selects nodes 
(events) with number equal to power of 2 from the last node to 
front for trial execution and stops when it finds the first sub-
sequence of events that can still reach the first node in the next 
level. As shown in Fig. 4(a), the pre-selection process will try 
event sequence 22,  21, 22, and 17, 18, 19, 20, 21, 22 in 
turn until the event sequence is accepted by the local reduction 
criteria. Finally, LHDD used only 16 seconds with 4 trial 
executions to get the same reduction result, which is much more 
efficient than the previous three DD algorithms. 

III. OUR EFFICIENT EVENT TRACE REDUCTION FRAMEWORK 

In this section, we first present the overall design of our event 
trace reduction system. Then we present three test case reduction 
algorithms: HDD, IHDD, and LHDD. 

 
Fig. 4 Pre-selection and local reduction strategy of LHDD 

 

 
Fig. 5 Design of SimplyDroid 
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A. Design of SimplyDroid 

The overall design of SimplyDroid is shown in Fig. 5. The 
input of SimplyDroid is the original test case (i.e., the original 
crash trace), while the output is a finally reduced test case. The 
SimplyDroid tool consists of 3 cooperating modules (colored 
blue): the test case reduction engine, the result checker, and the 
enhanced Monkey with application state logger. The test case 
reduction engine is the core of the SimplyDroid tool, which 
realizes the sets of test case reduction algorithms.   

The reduction process is iterative, where the test case 
reduction engine repeatedly sends reduced Monkey events to the 
application under test. The enhanced monkey in turn sends the 
inputs in the script to the application under test. We also 
enhanced Monkey to record the state of the application (i.e., 
Activity ID) upon sending each event. At the end of a test script 
execution, the result checker checks the results by comparing 
exception messages and the stack traces outputted by Monkey. 
Then, the test results and the GUI state log is feedback to the 
reduction engine to continue the delta debugging cycle. Finally, 
the reduced test case is outputted. 

B. Building GUI State Hierarchy Tree 

As shown in Table 1, the algorithm builds the GUI state 
hierarchy tree from the crash trace containing the input events 
and states. As discussed in Section II, the crash trace of states is 
in the form <s1, s2, …, sn, crash state> where si represents states. 
Note there is a corresponding events trace <e1, e2, …, en> where 
each event ei triggers the transition from state si  to si+1.  The 
algorithm builds a new node for each state si (line 1 to 3). Then 
it is compared with the nodes (states) from its previous node si-1 

to the root node (line 4 to 11). If si  is equal to any node, it is 
added as a sibling node to it. Otherwise, it is added as a child 
node of its previous node (line 12 & 13). 

TABLE 1. THE GUI HIERARCHY TREE CONSTRUCTION ALGORITHM 
 procedure build(S) 
 Input S : the sequences of activity state logged. 
 Output r : the root node of GUI tree built. 
 begin 
1     n0 = new Node()    //n0 is an empty node 
2     for( i : 1 to length(S) ) { 
3         ni = new node(si)    //the state of node ni is si 
4         ns = ni-1  //start comparison from previous node 
5         while( ns != n0 ) { 
6             if( ni.state == ns.state ){//find a node with same state as ni

7                 set ni as a sibling node of ns  
8                 break 
9             } 
10             ns = ns.parent  //walk up the tree, 
11         } //end while 
12         if( ns == n0 ) { //no node in the path to root have same state
13             set ni as a child node of ni-1 
14         }  //end if 
15     } //end for 
16     return n0  //return the root node 
 end 

C. Hierarchical Delta Debugging Algorithm (HDD) 

As shown in Table 2, the HDD algorithm is a realization of 
the idea of existing hierarchical delta debugging but operating 
on our tree-based representation of a trace.  

  

 

TABLE 2 THE HDD ALGORITHM 
procedure hdd(E, r) 

 Input E : the sequence of events logged. 
Input r : the root node of the GUI state hierarchy tree.
Output Er : the simplified event sequence. 
begin

1   M.add( r ) //M is a global vector storing the reduced events
2   nodeseq = empty //nodseq stores the reduced nodes at each level
3   N = empty // N stores the sequence of nodes in next level
4    add to N the child nodes of each node in M 
5    do{    
6        if (N is not empty ) {
7            inlevel_hdd( N, 2 )  //reduction in current level
8          for(each node ni in N) {//M now contains the reduced events
9              if( M.contain( ni ) ) { //update nodeseq with M
10                  nodeseq.insert(ni)   
11              }
12              else {  
13                  remove node ni and its subtree from the tree rooted at r}
14            } //end for
15         } // end if (N is not empty ) 

          N.clear() //clear N to be empty 
16           add to N the child nodes of each node in M //update N
17       }while ( N is not empty ); 

   //note Er is updated in checkEvents on triggering bug
18    return Er

19 end

procedure inlevel_hdd(N0, p) 
Input N0 : the sequence of nodes need to simplify at current level
Input p : the number of partition in this simplification.
begin

20    if( length( N0 ) < p )
21        return
22    //partition N0 into p subsequences N1, N2, … Np

23    [N1, N2, … Np] = partition(N0, p ) 
24    evtseq = nodes2events( nodeseq )  //map nodes (states) to events
25    for( each node nj in group Np ) { //test Np  first
26        evtseq.insert(eventsInSubTree(nj))  //inserts events in subtree
27    } //end for
28    if(checkEvents(evtseq) ) { //execute evtseq for checking
29        M = Np //record current reduction result 
30        inlevel_hdd( Np, 2 ) //continue finer reduction
31        return  //successful reduction from Np, return
32      }
33    for( i : p-1 to 1 ) {

        //check the complement of the other p-1 partition
34        evtseq = nodes2events( nodeseq ) 
35        for( each node nj in N1 to Np except Ni ) { 
36            evtseq.insert(eventsInSubTree( nj ) ) 
37        }
38        if( checkEvents( evtseq ) ) { 
39            M = merge( N1 to Np except Ni ) 
40            inlevel_hdd( M, p-1 ) 
41            return; //successful reduction from complements
42         }

   } //end for
   //fail at current granularity, reduction at finer granularity

43   inlevel_hdd (Np, min( 2*p, length( Np ) ) ) 
44    return
45 end

46 procedure checkEvents(E0) 
47 Input E0 : the sequence of events need to execute on the application.
48 Output res : whether this sequence can reproduce the crash.
49 begin
50        if E0 can trigger crash on execution { 
51            Er = E0 //update Er  on successful triggering crash
52            return true } // end if 
53        return false  //Events cannot trigger crash 
54 end
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This algorithm starts by invoking hdd(). Owing to one-one 
correspondences between input events and nodes (states) in the 
tree, the algorithm simplifies the nodes (states) level by level 
from top to bottom (line 1 to 17). Within each level, the in-level 
node simplification procedure inlevel_hdd() is called (line 7). M 
is a global vector storing the current successfully reduced events, 
which is updated in inlevel_hdd() (line 29 and 39). The nodseq 
stores the reduced nodes at current level and is updated by M 
(line 10). And, N stores the next level of nodes for reduction. The 
inlevel_hdd() realizes the idea of hierarchical delta debugging 
within one level until a simplest node sequence is found. It 
partitions the event sequences (line 23), checks the last partition, 
and performs recursive reduction if successful (line 30). 
Otherwise, it tries to reduce the complement of other partitions 
(line 33 to 41) with recursive calls. If it still fails, it performs 
finer level reduction (line 44). The procedure checkEvents() is 
responsible for execute event sequences, check whether the 
crash is triggered and update Er, the final simplified event 
sequence (line 46 to 54).  

 There are three subroutines whose implementation is omitted 
for brevity, which we explain as follows: (1) partition() (line 23), 
whose function is to partition node sequence into subsequences 
with equal number of nodes. (2) nodes2events() (line 24, 34) 
maps the sequence of nodes to the corresponding  sequence of 
events. (3) eventsInSubTree() (line 26, 36), whose function is to 
return all events in the subtree of a node. 

D. Balanced Hierarchical Delta Debugging Algorithm 
(BHDD) 

 The algorithm of BHDD optimizes the HDD algorithm by 
changing the subroutine partition() (i.e., line 23 of HDD 
algorithm). The partition() of BHDD is to divide node sequence 
in the current level into partitions with equal number of nodes 
by counting the number of nodes in their sub-trees. We omit its 
detailed implementation for brevity. 

E. Layed Hierarchical Delta Debugging Algorithm (LHDD) 

 As shown in Table 3, the algorithm lhdd() is based on hdd() 
except with two optimizations. The first optimization is to add a 
process of pre-selection (line 7 to 22), within which more nodes 
are selected until the selected sequence of events that can trigger 
a transition to next level of Activity is found. The second 
optimization is to only checks the successful transition from the 
last node in the local level to the first node in the next level of 
Activity in checkEvents(). This saves the execution of the events 
in the subtree of the last node.   

 The procedure inlevel_hdd() of LHDD is the same as that of 
HDD algorithm, so we omit it for brevity. However, there are 
some procedures called in inlevel_hdd() that is changed for 
LHDD algorithm, which we detail them here. First, the function 
eventsInSubTree() for LHDD is the same as that for HDD 
except that if a node is the last node, it adds only the node itself 
without adding events in its subtree. Second, the function 
partition() for LHDD is the same as that of BHDD by 
considering of number of nodes of the subtrees, except that the 
size of the last node in N is counted as 1. The difference in these 
two procedures essentially reflects the local reduction logic: the 
sub-tree of the last node in the current level is not considered 
during reduction. 

TABLE 3 THE LHDD ALGORITHM 
procedure lhdd(E, r) 
Input E : the sequence of events logged. 
Input r : the root node of the GUI state hierarchy tree.
Output Er : the simplified event sequence. 
begin

1    M.add(r)    //M is a global vector storing the reduced events
2  nodeseq = empty //nodseq stores the reduced nodes at each level
3    N = empty // N stores the sequence of nodes in next level
4    add to N the child nodes of each node in M 
5    do{    
6           if (N is not empty) {  
7            preLen = 1  //perform preselection, start at 1
8             // get the current preselected node sequence Ns

9            Ns = N[length(N) – preLen, length(N) – 1]    
10            while( preLen < length(N) ) { 
11               evtseq = nodes2events ( nodeseq )    // to event sequence
12              for( each node ni in group Ns ) { 
13                    //add sub-tree of selected nodes except the last node
14                   evtseq.insert(eventsInSubTree( ni ) )    

                } //end for
15               if( checkEvents( evtseq ) ) {//preselection is successful
16                       break;  //exit preselection 
17                    }
18               else { //try pre-selection with double size
19                   preLen = min( 2* preLen, length(N) )
20                   Ns = N[length(N) – preLen, length(N) – 1]
21               }
22         } // end of while, preselections stops 
23          inlevel_hdd( Ns, 2 ) //performing in level reduction
24         for( each node ni in N ) { 
25           if( M.contain( ni ) ) { //update nodseq with M
26                nodeseq.insert( ni )   
27              }
28              else {
29                remove node n and its subtree from GUI tree rooted at r
30                }
31          } //end for
32       } //end if (N is not empty) 
33        N.clear() //clear N to be empty 
34        add to N the child nodes of each node in M //update N
35   }while( N is not empty ); //reduce at all levels
36    //Er is updated in checkEvents on triggering bug
37    return Er

38 end

40 procedure checkEvents(E0) 
41 Input E0 : the sequence of event need to execute in the application.
42 Output res : whether this sequence can trigger the crash at last level 

or transit to next activity successfully at middle level
43 begin
44    if( E0 contains the last event of E ) {  //last level, testing for crash
45        if E0 can trigger crash { 
46            Er = E0  //update Er with the sequence E0

47             return true;
48           }
49       }
50    else { //not last level, testing for transition 
51       If  E0 can transit to the first node in the next level of Activity
52              return true; }
53     return false; //events can neither trigger crash nor transition
54 end

Finally, the procedure checkEvents() called in both lhdd() 
and inlevel_hdd() is also changed (line 40 to 54), which 
differentiates local check at intermediate levels and the final 
check in the last level. For the local check, the algorithm only 
checks the successful transition to the next Activity. For the final 
check in the last level, the algorithm checks whether a crash is 
triggered.   
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IV. EXPERIMENT AND RESULTS ANALYSIS 

This section presents our experiment and data analysis. 

A. Research Questions 

RQ1: Are HDD, BHDD, and LHDD effective to reduce the 
size of Android input event sequence? 

RQ2: Are HDD, BHDD, and LHDD efficient when 
performing test case reduction? 

RQ3:  If LHDD is efficient, which of the two optimizations 
contributes more to its performance improvement. 

B. Experimental Setup 

We used a Lenovo laptop V4400 as our testing host. The 
laptop was equipped with Intel i7 4702 and 16GB memory. The 
operating system was Windows 10 and the Integrated 
Development Environment was Eclipse. We used the Monkey 
tool as our testing engine. On the phone model Mi1 the interval 
between sending two events was set as 500ms and on Mi5 the 
interval was set as 800ms to make sure that there was enough 
time for each event to be processed.  

C. Subject Program and Crash Traces 

We have selected 8 real-life subject programs for our 
experimental study. The descriptive statistics of the 8 subject 
programs is summarized in Table 4. We have listed the program 
name, a brief description of the application, the application 
version, the Android OS version, the type of fault within the 
application, the device hardware model used to run the tests, the 
types of exceptions captured upon crash, the number of crash 
traces for each application, and the range of the length of the 
traces in the table. For example, Yahtzee was a mobile game 
application whose program version is 1.1. The application was 
running on Mi5 phone with Android OS version 2.3.3. We 
injected mutant faults within the application to generate 17 
crashes of type ArithmeticException, and the number of events 
within the crash trace ranges from 100 to 214. The other subjects 
can be interpreted similarly. 

All the 8 subjects were all real-life mobile application that 
had evolved for many years. Furthermore, the released versions 
were often quite stable while unstable commit versions were 
often hard to acquire. As a result, finding crash traces in 
application releases with Monkey was not an easy task. For 
DalvikExplorer, WeightChart, and Ringdroid, we were lucky 
enough to find 25 crash traces with real faults. For the other 5 
subjects, we had to manually create mutants by injecting faults 
frequently found in mobile applications. We inserted, removed 

or modified statements to inject faults. We got another 95 crash 
traces from the mutant programs.  

Our algorithm only worked on deterministic traces, so we 
examined these 120 crash traces to check whether they can 
replay stably. We manually executed each crash trace 3 times. 
Then we compared their exception messages and stack traces in 
the output to confirm reproducibility. We removed 19 traces, 
which cannot be replayed by Monkey stably due to non-
determinism in its execution. We removed a subject called 
Sanity and its 7 crash traces because replaying it stably requires 
resetting its data before each execution, which was not supported 
by the current implementation of SimplyDroid. We removed 2 
versions of WhoHasMyStuff because the interaction with the 
application may sometimes activate the soft input keyboard, 
which changed the layout of the GUI. As a result, the coordinate-
sensitive Monkey cannot replay them. Finally, the 92 crash 
traces left were all used in our data analysis.  

To facilitate identification of the GUI state hierarchy, we had 
also enhanced Monkey tool to log the application GUI states (i.e., 
Activity ID in this work) during testing. Therefore, our crash 
traces contained not only the sequence of input events but also 
their corresponding GUI states.  

D. Experimental Procedure 

We also realized the classic Delta-Debugging (DD) 
algorithm as a benchmarking technique for comparison. We 
performed test case reduction on all the 92 crash traces with DD, 
HDD, BHDD, and LHDD algorithms. We logged the size of the 
reduced test cases as well as the time for reduction for each 
technique on each trace. Since there are two major optimizations 
in the LHDD algorithm (i.e,, the pre-selection and the local 
reduction), we wonder which optimization contributes more in 
its performance improvement. So we turned off the pre-selection 
optimization in the LHDD (i.e., using the local reduction 
optimization only) to form a new technique LHDD-NoPre for 
comparison with LHDD. We also used LHDD-NoPre to perform 
test case reduction on the 92 crash traces and log their reduction 
results. 

E. Experimental Results and Analysis 

In this section, we present our experimentation results 
followed by detailed results analysis for each research question. 

1) Answering RQ1: In this section, we would like to know 
whether our proposed HDD techniques are effective to reduce 
the size of Android input event sequence.  

TABLE 4  SUBJECT PROGRAMS

Subject Subject Description 
Program 
Version 

Android 
Version

Fault 
Type

Device Exception Type 
Number of 
crash traces 

Crash Trace 
Length

Yahtzee Game 1.1 2.3.3 Mutant Mi5 ArithmeticException 17 100-214
K9mail Mail  5 2.3.3 Mutant Mi5 NullPointerException 23 150-621

DalvikExplorer 
System information 

Viewer 
3.4 4.1.2 Real Mi1 

ActivityNotFound & 
OutOfMemoryError

11 36-1525 

WeightChart Weight recorder 1.0.4 2.3.3 Real Mi1 ActivityNotFound 8 16-765
Ringdroid Ringtone editor 2.6 4.1.2 Real Mi1 RuntimeException 6 314-885

Tippy Calculator 1.1.3 2.3.3 Mutant Mi5 ArithmeticException 9 31-162
SyncMyPic Photo synchronizer 0.15 2.3.3 Mutant Mi5 ArithmeticException 8 27-462

WhoHasMyStuff Item lending helper 1.0.7 4.4.2 Mutant Mi5 RuntimeException 10 50-679
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We have shown the length of the crash traces after reduction 
by each technique in Table 5. For each trace, we show its number, 
the original length of the crash trace before reduction and the 
length of the reduced crash trace for DD, HDD, BHDD, and 
LHDD, each in one row. Since there are too many traces (92 in 
total) to be shown, we have to wrap around the results at number 
47 within the subject DalvikExplorer. We also listed the results 
of LHDD without pre-selection (LHDD-NoPre) in the last row 
for comparison purpose, which we will discuss when answering 
RQ3.  

When compared with the original crash trace length, all the 
techniques achieve significant test case reduction rates. Except 
for a few outlier cases, most of these techniques achieve 
reduction rates of more than 90%. Furthermore, the actual length 
of crash traces after reduction is small for most of the cases. Thus 
we can answer RQ1 that the HDD techniques are effective to 
reduce the size of crash. 

There are 3 crash traces (No. 28 and No. 40 of K9mail, No. 
58 of WeightChart, in grey) where the family of HDD 
techniques generate larger reduced test case than DD technique. 
We have inspected these 3 crash traces carefully and found that 
this is due to the imprecise logging of application states in our 
enhanced Monkey. For K9mail, a popup window interferes with 
the current Activity; for WeightChart, a System Activity 
misleads our logger. We will improve our state logger in future 
work.  

Despite these exceptional cases, the family of HDD 
techniques (HDD, BHDD, LHDD) in general has statistically 
comparable reduction effectiveness as the DD technique. We 
have performed ANOVA test to check whether the 4 different 
techniques (DD, HDD, BHDD, LHDD) have significant 
difference from each other. The ANOVA return a p-value more 
than 0.1, which cannot reject the null hypothesis at 0.05 
significance level. Therefore, there is no significant difference 
among these 4 techniques in terms of reduction effectiveness. 

2) Answering RQ2: In this section, we would like to know 
whether the family of HDD techniques is efficient such that 

developers need not to wait for a prolonged period to get a 
reduced test case.  

The test case reduction time for the 8 subject programs are 
shown in Fig. 6 to Fig. 13. Within each figure, the x-axis shows the 
crash traces number and the y-axis shows the test case reduction 
time in seconds. For some programs, the difference in reduction 
time between different crash traces is so big that we have to show 
the results in the log scale for y-axis. 

We can see from the plots that in general the LHDD 
algorithm performs the best while the DD algorithm performs 
the worst. In fact, for majority of crash traces, the time saving of 
the LHDD technique compared to the DD technique is 
significant. For example, for crash trace No. 5 of WeightChart, 
DD takes 10 hours (36223 seconds) whereas LHDD takes only 
less than 7 minutes (413 seconds). When averaged over the 92 
crash traces, HDD, BHDD, and LHDD save 4.6, 9.8, and 16 
minutes over DD per trace, respectively. In total, HDD, BHDD, 
and LHDD save around 7, 15 and 25 hours of debugging time 
over DD on all 92 crash traces, respectively. 

TABLE 6  SUMMARY OF TEST CASE REDUCTION EFFICIENCY 

> DD HDD BHDD
Count Percentage Count Percentage Count Percentage

HDD 55 60% \ \ \ \
BHDD 75 81% 71 77% \ \
LHDD 86 93% 84 91% 74 80%
 
The reduction efficiency from DD to HDD and then to 

BHDD and finally LHDD appears to increase gradually. For 
each pair of techniques, we have computed the number and 
percentage of crash traces where the former uses less test case 
reduction time (in other words, better “>”) than the later as 
shown in Table 6. HDD is more efficient than DD on 55 out of 
92 cases. The percentage of crash traces where BHDD is more 
efficient than DD and HDD are 81% and 77%, respectively. 
LHDD is more efficient than DD, HDD, and BHDD on 93%, 
91%, and 80% of the crash traces, respectively.   

 

TABLE 5  LENGTH OF CRASH TRACE (TEST CASE) AFTER REDUCTION

Subjects Yahtzee K9mail DalvikExplorer

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 4243 44 45 46

Original 168 196153214 131100101 110121121 126128111 134123107110171156587216621269184193275216366266217261272215220202154216 150269180 36 75 1173079501525

DD 8 7 7 8 7 7 9 7 7 7 9 7 8 7 7 7 7 6 5 7 4 4 4 4 7 5 4 5 5 8 5 5 6 5 4 4 5 7 8 5 4 4 4 4 4 4

HDD 7 9 10 9 8 8 8 7 8 9 7 10 9 9 7 10 7 10 6 5 7 5 5 4 8 6 6 7 5 9 5 8 6 4 8 4 6 4 10 7 4 4 4 4 4 4

BHDD 8 9 10 8 8 8 7 7 8 8 8 10 11 10 8 8 8 7 5 5 7 5 5 4 12 5 7 6 4 11 6 6 6 4 5 5 5 6 9 10 4 4 4 4 4 4

LHDD 7 8 7 8 7 8 7 7 8 8 8 7 8 7 7 9 8 7 7 6 6 9 6 4 6 6 5 17 6 11 10 9 6 5 5 5 9 6 7 13 4 4 4 4 4 4
LHDD 
-NoPre 

7 8 7 8 7 9 7 7 7 7 7 7 7 7 7 7 7 10 9 5 6 8 7 6 6 6 4 15 13 12 8 8 5 4 4 4 11 4 7 12 4 4 4 4 4 4

Subjects DalvikExplorer WeightChart Ringdroid Tippy SyncMyPic WhoHasMyStuff 

No. 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 8889 90 91 92

Original 1359397404265 294 16 46 521514239 765448220 885449550314646706 70 76 63 31 102129162 46 99 45 426 89 154177462 27 44 132 78 306353 472 50 217679149 231

DD 4 4 9 4 4 9 5 5 9 5 5 5 5 8 8 7 7 7 7 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 2 6 6 5 6 6 5 6 6 5 6

HDD 4 4 11 4 4 7 9 8 8 7 8 19 7 7 7 7 7 7 7 4 4 6 4 4 4 4 4 4 4 5 4 4 6 9 4 3 6 6 5 7 6 5 6 7 5 6

BHDD 4 4 11 4 4 9 5 8 8 7 8 18 7 7 7 7 7 7 7 4 4 6 4 4 4 4 4 4 4 5 4 4 6 9 4 3 6 6 5 6 6 5 6 7 5 6

LHDD 4 4 13 4 4 5 6 8 9 7 8 14 9 7 7 7 6 8 7 4 4 6 4 4 4 4 4 4 4 5 4 4 5 9 4 3 6 6 5 6 6 5 6 7 5 6
LHDD 
-NoPre 5 4 12 4 4 5 7 7 11 10 14 21 10 7 7 7 6 7 7 4 4 5 4 4 4 4 4 4 4 5 4 4 6 8 4 3 6 6 5 6 6 5 6 7 5 6
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Fig. 6 Test Case Reduction Time for DalvikExplorer Fig. 7 Test Case Reduction Time for WeightChart

Fig. 8 Test Case Reduction Time for RingDroid Fig. 9 Test Case Reduction Time for Tippy

Fig. 10 Test Case Reduction Time for SyncMyPic Fig. 11 Test Case Reduction Time for WhoHasMyStuff

 
Fig. 12 Test Case Reduction Time for Yahtzee
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There are a few exception cases where LHDD is slower to 
perform reduction than DD. We have examined those cases to 
understand the reasons behind. For example, the crash trace No. 
1 and No. 6 of Ringdroid optionally popped up an AlertDialog, 
which hided the underlying Activity. This situation made our 
Monkey tool unable to log the correct GUI states. Similarly, the 
crash trace No. 5 and No. 16 of K9mail popped ups floating 
windows during execution, which made our Monkey tool unable 
to log the same GUI states each time. This in turn disrupted the 
reduction process of LHDD.  

Despite those exceptional cases, we can see from our results 
that this family of HDD techniques increasingly improves the 
efficiency of DD (where LHDD > BHDD > HDD > DD) without 
significant loss of reduction effectiveness.  

3) Answering RQ3: For our LHDD algorithm, there are two 
optimizations to improve its performance. In this section, we 
would like to find out how much each optimization has 
contributed to the overall optimization. To perform the 
comparison, in the experiment, we turned off the pre-selection 
optimization in LHDD so that we can see the impact of each 
factor with comparison. 

In Table 5, the rows of LHDD-NoPre show the reduction 
results of LHDD without pre-selection. We can see that in 
general, the reduction effectiveness of LHDD-NoPre is close to 
LHDD. A further ANOVA analysis also confirms that there is 
no significant difference between LHDD-NoPre and LHDD in 
terms of the size of reduced test case.  

However, as shown in Fig. 6 to Fig. 13, the test case reduction 
time of LHDD-NoPre is larger than LHDD on most crash traces. 
We further count the number of crash traces where LHDD 
performs better than LHDD-NoPre. We found that there are 83 
out of the 92 (i.e., 90%) crash traces on which LHDD performs 
better. Furthermore, if we compare LHDD-NoPre with its base 
technique BHDD (note their partition() routine is the same), 
there are 60 out of the 92 (i.e., 65%) crash traces on which 

LHDD-NoPre outperforms. This result shows the performance 
of LHDD-NoPre lies in between BHDD and LHDD. Therefore, 
we can answer RQ3 that both optimizations (local reduction and 
pre-selection) contribute to the performance improvement of 
LHDD. 

F. Threats to Validity 

We focused on improving the efficiency of test case 
reduction technique rather than dealing with the impact of non-
determinism in execution. Therefore, we selected stable crash 
traces to perform test case reduction. We leave the handling of 
non-deterministic crash traces as a future work. 

The definition of state equivalence also has an impact on the 
test case reduction. Currently, our trace representation uses the 
Activity ID to represent the GUI state, which is a lightweight 
solution. Using a finer level of GUI state equivalence to build 
the GUI hierarchy tree may lead to different test case reduction 
results. However, the logging of state will also become 
expensive. We will leave the exploration of this trade-off in 
future work. 

We use Java to realize our SimplyDroid tool. We have 
carefully performed code review and testing on our 
implementation to ensure their correctness. We used 8 subjects 
and 92 crash traces to evaluate our SimplyDroid platform. 
Additional studies on more real-life crash traces will further 
strengthen the validity of our study.  

In our experiment, we removed Sanity and its 7 crash traces 
because replaying it stably requires resetting its data before each 
execution. To enhance the applicability of SimplyDroid, we may 
perform reinstallation of the application or reload a system 
snapshot with the emulator before each execution.   

V. RELATED WORK 

In this section, we will briefly review related works, 
including debugging techniques, Android testing techniques, 
and test case reduction techniques. 

 
Fig. 13 Test Case Reduction Time for K9mail 
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A. Debugging Techniques 

Fault localization is a time consuming. Program slicing 
[11][14][23][28] can confine the search range to a program slice 
instead of the entire program. A program slice can be obtained 
statically [24] or dynamically [1]. Spectrum-based fault 
localization correlates failures against problem spectra 
[13][21][22], which provides correlation information on 
program entities for users to review. 

There are other techniques for fault localization, such as 
statistical methods to locate bugs with instrumented predicates 
[16], state-based methods that use variables and values, and 
even machine learning-based techniques that train neural 
networks to construct models for fault localization [4][5]. 

B.  Android Application Testing Technique  

There are also many techniques proposed for Android 
application testing. 

Model based testing techniques first build a model for the 
application under test and then generate test cases based on the 
model [10]. Amalfitano et al. [2] proposed a crawler-based 
technique to build a GUI model and generate input events. 
PUMA [12] is a dynamic analysis framework and test case 
generation tool with generic design. Choi et al [7] proposed the 
SwiftHand tool to minimize the number of application restart 
during testing. Azim et al. [3] proposed the A3E tool with two 
complementary GUI traversal strategies: A3E-Depth-First and 
A3E-Targeted.  

Monkey is a well-known Android application random 
testing tool developed by Google and has been widely adopted 
in stress testing and reliability testing [40]. Dynodroid is 
another automated testing tool with strategy similar to Monkey, 
yet with more sophisticated strategies [17]. Sapienz is a multi-
objective and search-based Android application-testing tool 
whose optimization goal includes both code coverage rate and 
fault detection rate [18]. 

There are also several test development platforms, such as 
MonkeyRunner [36], Robotium [37], and UIAutoMator [29], 
for developers to write customized test scripts. 

C. Test Case Reduction 

The goal of test case reduction or minimization is to find a 
minimal subset of inputs that can still produce the same failure. 

Delta Debugging [25] is a method to automate the debugging 
of programs using the hypothesis-trial-result loop [32]. 
Simplification and isolation are two major algorithms of Delta 
Debugging [27]. DDMIN is direct realization of simplification 
algorithm [27], whose goal is to find a minimal subset of inputs 
that each element of it is necessary for reproducing the failure so 
that it cannot be removed.  

For test case reduction of Android application, Clapp et al. 
[9] proposed the Non-Deterministic Delta Debugging 
Minimization (ND3MIN) algorithm. ND3MIN improved the 
DDMIN algorithm by handling the non-deterministic execution 
of Android input event sequence. It adopts a probability 
approach by executing each candidate reduction many times and 
only considers this candidate successful if its success rate 
exceeds a threshold. Our SimplyDroid tool differs from 

ND3MIN in two aspects. First, they have different reduction 
goals. SimplyDroid tries to reproduce a crash or failure while 
ND3MIN tries to find a minimal event trace that can reach a 
given target Activity. Second, SimplyDroid mainly addresses 
the problem of test case reduction efficiency, whereas ND3MIN 
mainly addresses the problem of non-deterministic execution. 

D. Simplification of Test Case with Structures 

DDMIN is based on test cases of string input so that the 
minimal independent element of simplification is a single 
character. Based on DDMIN, the Berkeley Delta algorithm [31] 
uses a line of text as the basic unit in reduction. C-Reducer can 
simplify large C programs [30]. It shares the same basic idea 
with Delta Debugging, but uses a modularized strategy of 
deletion and simplification based on the grammar tree 
representation of the program source code [20]. 

Apart from C/C++ programs, there are also many test cases 
artifacts with explicit hierarchical structure characteristics such 
as HTML and XML files. Misherghi and Su proposed the 
original Hierarchical Delta Debugging algorithm to realize the 
simplification of C/C++ programs and HTML/XML files [19]. 
Utilizing the hierarchical structure information of the test input, 
their hierarchical delta debugging algorithm can be much more 
efficient than the standard DD algorithm. 

VI. CONCLUSION AND FUTURE WORK 

There are many automated test case generation techniques to 
ensure the quality of Android applications. The Monkey fuzz 
testing tool and its improved versions are simple, effective and 
widely adopted in the industry. The test cases generated by 
Monkey often contain a large number of input events, which are 
difficult to be used by developers in debugging. It is desirable to 
simplify the input event sequence as small as possible while 
triggering the same failure. However, the traditional delta 
debugging technique is slow to perform such simplification. We 
observe that the events within a failure-inducing trace have 
hierarchical relationships in the form of user interaction sessions 
that can be reduced together with high probability. In this work, 
we have proposed SimplyDroid, a crash trace simplification tool 
for Android applications. We have proposed a novel GUI state 
hierarchy tree as trace representation and a family of 3 
hierarchical delta debugging algorithms to operate on this trace 
representation. Our experiments on 92 crash input traces on eight 
real-life Android applications show that techniques in this family 
are increasingly more efficient to perform test input reduction.  

For future work, we will further study the non-deterministic 
execution problem in the context test case reduction. We will 
also perform empirical study to explore the impact of state 
equivalence on test case reduction.  
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