
Cache Attack on AES for Android Smartphone*
Bo Li

School of Computer Science and Engineering

Beihang Univeristy

Beijing, China

(+86)82338059

leborn@buaa.edu.cn

Bo Jiang†
School of Computer Science and Engineering

Beihang Univeristy

Beijing, China

(+86)82338059

jiangbo@buaa.edu.cn

ABSTRACT
Cache attack is mainly based on information leakage

through the timing difference between cache hit and

miss. It is an effective technique to attack AES

implementations on x86 platform. However, since the

cache architecture, instruction set of smartphone is

different from that of the Intel x86 platform,

effective cache attack on AES implementations for

smart phones still faces several challenges. In this

work, we realized an effective cache attack on AES

implementations for Android smart phone based on the

Prime+Probe strategy. We also proposed to use K-S

statistical test to help rank private key assumptions

in noisy execution environment. Our results show that

cache attack on ASE implementations for Android

platform is practical and countermeasures are needed

to ensure mobile security.

CCS Concepts
Security and privacy → Mobile platform security;

Keywords
Cache attack; Android; AES; Side channel attack.

1. INTRODUCTION
With the rapid development of mobile Internet in

recent years, mobile phones and other mobile devices

have become an indispensable part of our lives. At

one side, it makes our life more convenient: we can

send mails, store personal data, communicate with

each other, transfer money and do business with our

smart phone. On the other side, the smart phone also

brings security threats to us. Our personal data,

bank account, confidential conversations are all

subject to attack from the mobile phone. Therefore,

with the prevalence of smart phones, more and more

attention has been paid to their security problems.

The smart phone manufacturers and the Android

operating system have used various measures to

enhance mobile security, including trusted execution

environment (TEE), virtual memory management,

permissions management, etc. However, due to

complexity of Android-based smart phones, security

vulnerabilities are inevitable.

In modern computer architecture, although different

processes are isolated in their own virtual address

spaces, they still shared the same L2 cache. When the

memory access time can be measured precisely, the

information on Cache hit/miss will leak critical

application execution information. Cache attack is

such techniques that utilize precise memory access

timing information to attack an application.

Cache attack can by synchronous or asynchronous. For

synchronous attack, the attackers can directly invoke

the interfaces of the application under attack

through shared memory spaces. For asynchronous attack,

there is no shared memory space between the attacker

and the victim. And the attacker can only passively

observe the memory access behaviors during execution.

In another word, there is no direct interaction

between the attacker and the victim when cache attack

is conducted, and they execute in parallel on the

same or different kernels to access their own address

space. Therefore, the attacker does not need extra

permissions.

In the last 10 years, more and more attention has

been paid to cache attacks techniques. Kocher et al.

[1] proposed a method to decipher the encryption

algorithm in the computer by analyzing the

information leaked by the cache at runtime. This idea

has evolved rapidly under the attention of computer

security professionals.

Permission to make digital or hard copies of all or part

of this work for personal or classroom use is granted

without fee provided that copies are not made or

distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions

from Permissions@acm.org.

ICCSP 2018, March 16–19, 2018, Guiyang, China

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6361-7/18/03…$15.00

https://doi.org/10.1145/3199478.3199488

In recent years, the cache attack technique has been

applied on the Intel x86 platform. Cache attack

techniques are used to monitor user keyboard inputs

and to recover AES encryption keys, For example, the

possibility of cross-process information leakage via

cache attack was first proposed by Hu in 1992 [1] in

the context of intentional transmission via covert

channels. In 1998, Kelsey et al. [2] discussed the

possibility of “attacks based on cache hit ratio in

large S-box ciphers.” In 2002, Page [3] described

theoretical attacks on DES via cache misses, assuming

an initially empty cache and the ability to identify

cache states with very high temporal resolution in

side-channel traces. Tsunoo et al. [4] proposed a

timing-based attack on DES, exploiting the effects of

collisions between the various memory lookups invoked

internally by the cipher. Furthermore, Gruss et al.

[5] demonstrated the possibility to automatically

exploit cache-based side-channel information based on

the Flush + Reload approach. Besides attacking

cryptographic implementations like AES T-table

implementations, they showed how to infer keystroke

information and even how to build a keylogger by

exploiting the cache side channel.

However, the CPUs of Android smart phone usually

adopts the ARM architecture, which is different from

the Intel x86 architecture in terms of instruction

set, cache organization mode and cache replacement

strategy. Therefore, effective cross-core cache

attack on non-root mobile phones emerged until

recently. Moritz Lipp et al. [6] proposed a cross

core attack model for ARM processors without

requiring root permissions. These models can

effectively acquire privacy information based on

statistical analysis of cache timing information

leakage. However, there is no detailed implementation

AES attacks on the Android platform. Because the

cache structure of smart phones is different from

Intel x86 architecture, the cache attack method of

Intel x86 platform must be adapted for mobile

platform. Frist, the cache replacement policy on the

x86 platform uses the LRU strategy, so eviction of

specified cache sets to memory is straightforward.

However, since Android uses a pseudo random

replacement policy, we need additional measures to

evict data from a specified cache sets into memory.

In addition, in order to obtain stable data access

time, it is usually necessary to preheat the access

memory or the cache operation. The previous attacks

usually use the first access to cache or memory

access time to measure cache hit or not, so it is

easy to introduce errors, resulting in unsatisfactory

results.

2. BACKGROUND

2.1 Determining the Best Eviction

Strategy
The first thing to do is to determine the best

eviction strategy. On Intel x86 platforms, we can use

the cflush instruction to evict cache lines to memory.

Although similar instructions exist on some of the

android devices, they are only useful in privilege

mode. So we need a more general strategy to evict the

content of specified cache to memory.

In our design, we adopt the continuous address access

strategy proposed in [6]. Continuous addresses access

is a general strategy, which reads data from

addresses that can be mapped into the same cache sets

to evict the data in the cache. Although we can read

large amount of addresses to guarantee eviction of

data from cache, a large number of memory access

operations will not only increase time, but also

increase the related memory storage for addresses.

Furthermore, since the cache of the mobile device

uses pseudo random replacement strategy, continuous

reading of a plurality of memory data does not

guarantee the eviction cache content. We make use of

the method proposed by Moritz Lipp et al. [6] to

automatically generate eviction strategies and test

its applicability. We have evaluated a large number

of eviction patterns on our Lenovo k51c78 mobile

phone, and identified the best eviction strategy.

2.2 The Prime + Probe Strategy
In order to obtain privacy information through the

cache, the attacker must have the ability to get

cache state. The prime + probe approach allows an

adversary to determine the cache sets used by the

victim’s computation. It consists of the following

three basic steps.

Prime + Probe:

1. Occupy specific cache sets.

2. Victim program is scheduled.

3. Determine which cache sets are still occupied.

The following steps detail the three stages of

Prime + Probe. First, for a specified set, the Prime

phase maps data to the cache and the previous cached

data is evicted into memory. Then the victim program

is executed. During its execution, the memory which

was accessed may be mapped to some sets of the cache

and took part of the line in the set. The last step

is Probe, which checks whether the data putted into

cache in the Prime phase is still in cache. It

measures the access time for memory addresses. If the

memory access time is large, it indicates a cache

miss has occurred. Therefore, the victim program is

highly probably to have accessed memory addresses

mapped to the cache.

2.3 Precise Measurement of Time
An accurate timing method is crucial for successful

cache attack. Because cache attack techniques must

use time to distinguish cache hit and cache miss,

which in turn helps the attacker to pinpoint which

cache sets have been used by the victim program. In

order to distinguish the situation between cache hit

and cache miss, timing sources or dedicated

performance counters can be used. Moritz Lipp et al.

[6] has proposed several non-privileged timing

methods. However, these interfaces are not supported

on all Android versions and all processors. Therefore,

it is necessary to determine the effective timing

method that can accurately and stably measure memory

access time for the device under attack. Besides

reading the CPU register to obtain the CPU cycle to

measure the time, there are three other measures. The

first is clock_gettime syscall, which is the timing

function of nanoseconds accuracy. The second is the

Perf performance analysis tool. The availability of
this feature depends on the Android kernel

configuration. The third is a thread timing simulator.

If no interface with sufficient accuracy is available,

an attacker can run a thread that increments a global

variable in a loop, providing a fair approximation of

a cycle counter. In this work, we firstly evaluate

the availability of different timing approach for our

phone model. Then we choose the more precise one

among those available approaches.

3. ATTACKING AES ALGORITHMS

3.1 The First Round Attack
In this paper, we focus on attacking AES

implementations whose memory access patterns are

particularly susceptible to cryptanalysis. Because

many implementations of AES on 32-bit processors are

based on lookup tables, as prescribed in the Rijndael

specification [7][8]. In our cases, the victim AES

implementation uses 8 T-tables, 𝑇0 , 𝑇1 , 𝑇2 , 𝑇3 ,

and 𝑇0
(10)

, 𝑇1
(10)

, 𝑇2
(10)

, 𝑇3
(10)

, and each T-table contains

256 4-byte words. During the process of AES

encryption, key k = (𝑘0, … , 𝑘15) is expanded into 10

round keys 𝐾(𝑟) for r = 1, … 10 . Each round key is

divided into 4 words of 4 bytes each: 𝐾(𝑟) =

(𝐾0
(𝑟)

, 𝐾1
(𝑟)

, 𝐾2
(𝑟)

, 𝐾3
(𝑟)

). The 0
th
 key is just the original

key

𝐾(0) = (𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝑘7, 𝑘8, 𝑘9, 𝑘10, 𝑘11, 𝑘12, 𝑘13, 𝑘14, 𝑘15).

Given a 16-byte plaintext p = (𝑝0, … , 𝑝15) , the AES

encryption progress need to calculate 4 intermediate

index for each T-table at each round. The initial

indices 𝑥(0) can be computed by 𝑥𝑖
(0) = 𝑝𝑖 ⊕ 𝑘𝑖 for i =

0, … ,15 . Then, the first 9 rounds are computed by

calculating the intermediate state as follows, for

round r = 0, … ,8:

(𝑥0
(𝑟+1)

, 𝑥1
(𝑟+1)

, 𝑥2
(𝑟+1)

, 𝑥3
(𝑟+1)

) ← 𝑇0[𝑥0
(𝑟)

] ⊕ 𝑇1[𝑥5
(𝑟)

] ⊕ 𝑇2[𝑥10
(𝑟)

] ⊕ 𝑇3[𝑥15
(𝑟)

] ⊕ 𝐾0
(𝑟+1)

(𝑥4
(𝑟+1)

, 𝑥5
(𝑟+1)

, 𝑥6
(𝑟+1)

, 𝑥7
(𝑟+1)

) ← 𝑇0[𝑥4
(𝑟)

] ⊕ 𝑇1[𝑥5
(𝑟)

] ⊕ 𝑇2[𝑥14
(𝑟)

] ⊕ 𝑇3[𝑥3
(𝑟)

] ⊕ 𝐾1
(𝑟+1)

(𝑥8
(𝑟+1)

, 𝑥9
(𝑟+1)

, 𝑥10
(𝑟+1)

, 𝑥11
(𝑟+1)

) ← 𝑇0[𝑥8
(𝑟)

] ⊕ 𝑇1[𝑥13
(𝑟)

] ⊕ 𝑇2[𝑥2
(𝑟)

] ⊕ 𝑇3[𝑥7
(𝑟)

] ⊕ 𝐾2
(𝑟+1)

(𝑥12
(𝑟+1)

, 𝑥13
(𝑟+1)

, 𝑥14
(𝑟+1)

, 𝑥15
(𝑟+1)

) ← 𝑇0[𝑥12
(𝑟)

] ⊕ 𝑇1[𝑥1
(𝑟)

] ⊕ 𝑇2[𝑥6
(𝑟)

] ⊕ 𝑇3[𝑥11
(𝑟)

] ⊕ 𝐾3
(𝑟+1)

However, in the last round, AES replaces 𝑇0, 𝑇1,𝑇2,

𝑇3, to 𝑇0
(10)

, 𝑇1
(10)

, 𝑇2
(10)

, 𝑇3
(10)

, and the result 𝑥(10) is

the cipher text.

We can only distinguish a cache hit from cache miss

by measuring memory access time. Furthermore, the

structure of many smartphones’ cache set is

associative mapping. Such a cache consists of storage

units called cache lines, each consisting of B bytes.
The cache is organized into S cache sets, each

containing W cache lines, so overall the cache

contains 𝐵 ∗ 𝑆 ∗ 𝑊 bytes. The size of one T-table

entry is 4 bytes and the cache line size B is usually
64 bytes, so every cache line can cache 16 T-table

entries. If two T-table entries map to the same cache

line, we say that the two entries are correlative.

However Prime + Probe only can evict and occupy a

specified cache set, and then measure the Probe time.

Since the cache set is the smallest eviction unit, we

could not just evict and occupy a cache line of a

specified set. So it is impossible to distinguish two

different byte addresses or cache T-table entries

mapped to the same cache set only by having knowledge

of cache hit or cache miss. Since every cache set

line can cache 64 bytes, and T-table entry is 4 bytes,

16 continuous T-table entries map to the same cache

set if the start address of first entry exactly map

to the start of cache line.

In this paper, we use Prime + Probe technique to

efficiently extract the full key. The approach is

divided into the first round and the second round

attack. Given a 16 byte key K = (𝑘0 ,...., 𝑘15), it

will be extended to the 10 round internal keys

𝐾（r） for r=1,... 10 in AES encryption process. Each

round key is divided into 4 words of 4 bytes

each: 𝐾(𝑟) = (𝐾0
(𝑟)

, 𝐾1
(𝑟)

, 𝐾2
(𝑟)

, 𝐾3
(𝑟)

) . In the first round

attack, we successfully gain the first 4 bits of each

byte. The first round attack is based on the accessed

indices of T-table which can be calculated simply

through the key and plaintext namely 𝑥𝑖
(0) = 𝑝𝑖 ⊕ 𝑘𝑖 for

all key index i = 0, … ,15. Thus, if we know the value

of plaintext byte 𝑝𝑖 and any information on the

accessed index 𝑥𝑖
(0) , we can directly translate these

knowledge to information on key byte 𝑘𝑖 . In the

progress of AES encryption, the first round of access

index of T-table can be obtained by the plaintext and

key through 𝑋𝑂𝑅 operation.

In this work, in order to obtain the key bits of the

AES, we guess the value of the key firstly and then

verify that whether they are the exact true key bytes.

In the hypothesis process, we only need to assume the

value of the first 4 bits of each byte because the

last 4 bits could not be distinguished in the first

round attack. There are two main step in the process

of hypothesis testing, the first step is to guess the

value of key bits of each byte, in which we should

enumerate the possible value of the first 4 bits for

every key byte separately from 0 to 15. In the second

step, we can calculate the index 𝑖 and the T-table

index based on known plaintext and the guessed key.

And then we can calculate the cache set index 𝑗 ,

which T-table data in index 𝑖 should map to. Finally

we inspect whether the cache set 𝑗 had been used in

the process of AES encryption by Prime + Probe .

Finally, we used the K-S statistical test to

determine whether the two distributions are the same

or not. The data of the first distribution measures

the time of Prime. While samples of the second

distribution are the time of Probe. If the K-S test

concludes that the two samples belong to different

distribution, we can say that the victim AES

implementation has accessed the specified sets during

execution.

3.2 The Second Round Attack
The First-Round attack can only narrow each key byte

down to 1/16 possibility, but the table lookups in

the first round cannot reveal more information. In

our experiment, the AES key contains 16 bytes, so

there are still 64 unknown bits to search for. The

second round attack mainly relies on the nonlinear

relationship between the plaintext, the key and the

cipher.

The indices accessed in the second round of

encryption are not apparent as in the first round. We

exploit the following equations derived from the

Rijndael specification, which give the four indices

of table lookups in the 2nd round. We can get 2nd

access indices as follows:

𝑥2 = 𝑠(𝑝0⊕𝑘0)⊕𝑠(𝑝5⊕𝑘5)⊕2•𝑠(𝑝10⊕𝑘10)⊕3•𝑠(𝑝15⊕𝑘15)⊕

𝑠(𝑘15)⊕𝑘2

𝑥5 = 𝑠(𝑝4⊕𝑘4)⊕2•𝑠(𝑝9⊕𝑘9)⊕3•𝑠(𝑝14⊕𝑘14)⊕𝑠(𝑝3⊕𝑘3)⊕

𝑠(𝑘14)⊕𝑘1⊕𝑘15

𝑥8 = 2•𝑠(𝑝8⊕𝑘8)⊕3•𝑠(𝑝13⊕𝑘13)⊕𝑠(𝑝2⊕𝑘2)⊕𝑠(𝑝7⊕𝑘7)⊕

𝑠(𝑘13)⊕𝑘0⊕𝑘4⊕𝑘8⊕1

𝑥15 = 3•𝑠(𝑝12⊕𝑘12)⊕𝑠(𝑝1⊕𝑘1)⊕𝑠(𝑝6⊕𝑘6)⊕2• 𝑠(𝑝11⊕

𝑘11)⊕𝑠(𝑘12)⊕𝑘15⊕𝑘3⊕𝑘7⊕𝑘11

Here, s(•) denotes the Rijndael S-box function, and •

denotes multiplication over GF(256).

The indices 𝑥2, 𝑥5, 𝑥8, and 𝑥15 are indices of T-table

2, 1, 0, and 3, respectively. These indices are

crucial to achieve AES attack. In this round, AES

attack is performed by enumerating all possible

values of all keys and observing the collected timing

information statistically. Hypothesis testing is

performed to identify a correct guess. For each

candidate guess, we collect its timing information as

samples, and then we perform statistical K-S test to

help identify the best guess.

Since we already have grained the first 4 bits of

each key byte, there are only 4 ∗ 16 bits needed to

guess in round 2. Furthermore, since 4 key bytes

together are needed to determine a second round T-

table index. We must guess 4 half bytes

simultaneously in second round hypothesis testing.

For each guess, we can get a measurement score 𝑚 .

Based on m, we can determine which guess has the

highest probability. Then we can get the index in T-

table when AES encryption is executed by plaintext 𝑝

with key 𝑘. Because the T-table access index reflects

the cache set index, T-table access index may in turn

lead to different access time for Prime + Probe

operation.

3.3 The K-S Statistical Test
In statistics, the Kolmogorov–Smirnov test [9] (K–S

test) is a nonparametric test of the equality of

continuous, one-dimensional probability distributions.

It can be used to compare a sample with a reference

probability distribution (one-sample K–S test), or

to compare two samples (two-sample K–S test). It is

named after Andrey Kolmogorov and Nikolai Smirnov.

The two Sample K-S test is one of the most useful and

general nonparametric methods for comparing two

samples.

In this work, we adopt the K-S test to determine

whether the victim program accessed the specified

sets of cache when attack is scheduled. At this point,

two samples that are crucial in cache attack are

ready. The first sample is the collection of

measurement data of Prime followed directly by the

Probe operation. The second sample is the collection

of measurement data of Prime operation, the memory

access of victim, and the probe operation. If the

memories accessed during the execution of the victim

program are not mapped to the specified cache sets,

the access time of the two samples should be similar

and the result of the K-S test must confirm that the

two samples belong to the same distribution. On the

other hand, if the memories accessed during the

execution of the victim program are mapped to the

specified set, the time in the second sample will be

greater than the time in the first sample in

distribution. So with the help of K-S test we can

automatically check whether the two samples belong to

a same distribution or not.

4. EXPERIMENTAL STUDY
Table 1. Lenovo K51c78 information

System
Cache

Size
Processor

Cache

details

Android

5.0
512 KB

ARM MT6753 8

cores

512 sets

16-way set

associative

In this section, we will perform the attack based on

our proposed approach on Android phone. This paper

mainly implements the side channel attack on AES at

Lenovo K51c78. The details property of Lenovo K51c78

is shown in Table 1. We can see in Table 1 that the

phone we use in the experiment is based on 8-core arm

processor with 512KB of cache. The operating system

of the phone is Android 5.0.

The attack processes can be divided into three steps:

the preparation phase, the first round attack and the

second round attack. The preparation phase mainly

focused on finding the precise time of cache hit and

cache miss thresholds and finding fast and effective

eviction strategies for the target smartphone. Then

we performed the first round and the second round of

attack as described in previous sections. Within each

round of attack, we obtain two samples for K-S test.

Finally, we perform K-S test to compare the sample

distributions. In order to obtain all key bit we

firstly enumerate all possible value of AES bytes and

then obtain the related measurement score. The

measurement score reflects the suspiciousness of a

certain key guess. So we can sort the guessed key

based on the measurement score. To reveal all AES key,

the first round attack is performed and the first

four bits of each byte are revealed successfully.

As shown in Figure 1, we can get the first 4 bits for

each key byte (16 in total). Each diagram represents

the first 4 bits of a key byte, plotted by 4-bit

values (0-15) on the horizontal axis and its K-S

measurement scores on the vertical. We can verify the

first 4-bit values are exactly the first 4-bit key

values for AES encryption.

In order to obtain the whole key bytes of the AES key,

we conduct the second round of attack. Through the

hypothesis testing of the remaining key bits, we

calculate the corresponding cache set access indices,

and then get the K-S value for the corresponding

indices as the measurement score. Finally, we sort

the score and find the highest score. We confirm

again the assumption key bytes related to the highest

measurement score are exact the key values used for

AES. As shown in Figure 2-5, each diagram represents

the last 4 bits of 4 key bytes, plotted by 4-bit

values on the y-axis and measurement scores on the x-

axis. As there is a large amount of combinations for

every 4 half key bytes, only combinations gaining the

highest measurement score are shown. Figure 2 shows

the measurement scores of key byte indices 0, 5, 10,

15. So we can conclude that the hypothesis values for

indices 0, 5, 10, 15 are separately 0x0, 0x5, 0x2,

0x7. Figure 3, Figure 4, Figure 5 can be interpreted

similarly like Figure 2. So, we can get the last 4-

bit value (0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,

0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7) for indices

0-15, which are exactly the real 4-bit key values,

used for AES encryption.

The experiment results are shown as follows:

Figure 2. The Result of the Second Round Attack(0, 5,

10, 15).

Figure 1. The Result of First Round Attack.

Figure 3. The Result of the Second Round Attack(4, 9,

14, 3).

Figure 4. The Result of the Second Round Attack (8,

13, 2, 7).

Figure 5. The Result of the Second Round Attack (12,

1, 6, 11).

As shown in Figure 2 to Figure 5, we can obviously

get the last four bits of each key. The y-axis

represents the 4 possible hypothesis values for the

corresponding key byte indices. The x-axis represents

their corresponding K-S scores. We only show

combinations graining the highest measurement score.

Figure 2 shows the measurement scores for key byte

indices 0, 5, 10, 15. So we can conclude that the

hypothesis values for indices 0, 5, 10, 15 are 0x0,

0x5, 0x2, 0x7, respectively. Figure 3 to Figure 5 can

be interpreted similarly.

5. RELATED WORK
In this section, we review the closely related works.

Bernstein [10] exploited the total execution time of

AES T-table to implement cache timing attacks.

Percival [11] and Osvik et al. [12] proposed more

fine-grained exploitations of memory accesses to the

CPU cache than Bernstein’s. Osvik et al.[12]

proposed two concepts, namely evict+time and

prime+probe, to determine which specific cache sets
were accessed by a victim program. Yarom and Falkner

[13] proposed Flush+Reload to attack cryptographic

implementations and to build cross-VM covert channels

[14], which are significantly more fine-grained

attack that exploits three fundamental concepts of

modern system architectures. Gruss et al. [15]

proposed the method of Evict+Reload, which uses

eviction instead of flush instruction. However, this

method has been implemented on Intel platform.

Wei et al. [16] proposed that ARM architecture is

different from Intel platform, the attack methods

proposed for Intel x86 CPUs are not exactly suit for

smartphones CPUs, so it is harder to hold a cache

attack on Android devices. Spreitzer and Plos [17]

proposed that although the cache attacks on mobile

devices are more difficult, there are still

information leaked by investigated the applicability

of Bernstein’s attack on smartphone. Similarly, Oren

et al. [18] demonstrated the possibility to exploit

cache attacks on Intel platforms from JavaScript and

showed how to infer visited websites and how to track

the user’s mouse activity.

6. CONCLUSION
Cache attack was a successful technique to realize

cross-process information leakage on Intel x86

platform. However, modern smartphones use one or more

multi-core ARM CPUs that have a different cache

organization from Intel x86 CPUs. Therefore, cache

attack on Android smartphone poses different

challenges. In this work we have realized a

successful cache attacks on AES implementations based

on Prime + Probe and K-S statistical test. We have

successfully recovered all AES key bytes after two

rounds of attack. Furthermore, these attacks are

practical as no privileged permissions are required.

For future work, we will further explore asynchronous

attacks on AES implementations to further enhance the

applicability of our work.

7. ACKNOWLEDGMENTS
This research is supported in part by NSFC (project

no. 61772056 and 61690202), the Research Fund of the

MIIT of China (project no. MJ-Y-2012-07), and the

research fund of the State Key Laboratory of Virtual

Reality Technology and Systems.

8. REFERENCES
[1] P. C. Kocher, Timing attacks on implementations

of diffie-hellman, rsa, dss, and other systems,

in Advances in Cryptology-CRYPTO’96, pp. 104–

113, Springer, 1996.

[2] J. Kelsey, B. Schneier, D. Wagner, C. Hall, Side

channel cryptanalysis of product ciphers, in Proc.

5th European Symposium on Research in Computer

Security. Lecture Notes in Computer Science, vol.

1485, Berlin, pp. 97–110, Springer, 1998.

[3] D. Page, Theoretical use of cache memory as a

cryptanalytic side-channel. Technical Report

CSTR-02-003, Department of Computer Science,

University of Bristol, 2002.

[4] Y. Tsunoo, E. Tsujihara, K. Minematsu, H.

Miyauchi, Cryptanalysis of block ciphers

implemented on computers with cache, in Proc.

International Symposium on Information Theory and

Its Applications, pp. 803–806, 2002.

[5] D. Gruss, R. Spreitzer, S. Mangard, Cache

Template Attacks: Automating Attacks on Inclusive

Last-Level Caches. In USENIX Security Symposium,

USENIX Association, pp. 897–912, 2015.

[6] M. Lipp, D. Gruss, R. Spreitzer et al, ARMageddon:

Cache Attacks on Mobile Devices. Mundo

Electrónico, 6(1): pp 60-65, 2016.

[7] J. Daemen, V. Rijmen, AES Proposal: Rijndael,

version 2, AES submission, 1999.

http://csrc.nist.gov/archive/aes/rijndael/Rijndae

l-ammended.pdf

[8] J. Daemen, V. Rijmen, The Design of Rijndael:

AES—The Advanced Encryption Standard, Berlin,

Springer, 2001.

[9] W. Feller, On the Kolmogorov–Smirnov Limit

Theorems for Empirical Distributions. Selected

Papers I. Springer International Publishing, pp.

177-189, 2015.

[10] D. J. Bernstein, Cache-Timing Attacks on AES,

2004. URL:http://cr.yp.to/papers.html#cachetiming.

[11] C. Percival, Cache Missing for Fun and Profit,

2005. URL:

http://daemonology.net/hyperthreadingconsidered-

harmful/.

[12] D. A. Osvik, A. Shamir, E. Tromer, Cache Attacks

and Countermeasures: The Case of AES. In Topics

in Cryptology – CT-RSA, vol. 3860 of LNCS, pp.

1–20, Springer, 2006.

[13] Y. Yarom, K. Falkner, FLUSH+RELOAD: A High

Resolution, Low Noise, L3 Cache Side-Channel

Attack. In USENIX Security Symposium, USENIX

Association, pp. 719–732, 2014.

[14] C. Maurice, C. Neumann, O. Heen, A. Francillon,

C5: Cross-Cores Cache Covert Channel. In

Detection of Intrusions and Malware, and

Vulnerability Assessment – DIMVA, vol. 9148 of

LNCS, pp. 46–64, Springer, 2015.

[15] D. Gruss, R. Spreitzer, S. Mangard, Cache

Template Attacks: Automating Attacks on Inclusive

Last-Level Caches. In USENIX Security Symposium,

USENIX Association, pp. 897–912, 2015.

[16] M. Weiss, B. Heinz, F. Stumpf, A Cache Timing

Attack on AES in Virtualization Environments. In

Financial Cryptography and Data Security – FC,

vol. 7397 of LNCS, pp. 314–328, Springer, 2012.

[17] R. Spreitzer, T. Plos, On the Applicability of

Time-Driven Cache Attacks on Mobile Devices. In

Network and System Security – NSS, vol. 7873 of

LNCS, pp. 656–662, Springer, 2013.

[18] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, A. D.

Keromytis, The Spy in the Sandbox: Practical

Cache Attacks in JavaScript and their

Implications. In Conference on Computer and

Communications Security – CCS, ACM, pp. 1406–

1418, 2015.

