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ABSTRACT 
Cache attack is mainly based on information leakage 

through the timing difference between cache hit and 

miss. It is an effective technique to attack AES 

implementations on x86  platform. However, since the 

cache architecture, instruction set of smartphone is 

different from that of the Intel x86  platform, 

effective cache attack on AES implementations for 

smart phones still faces several challenges. In this 

work, we realized an effective cache attack on AES 

implementations for Android smart phone based on the 

Prime+Probe strategy. We also proposed to use K-S 

statistical test to help rank private key assumptions 

in noisy execution environment. Our results show that 

cache attack on ASE implementations for Android 

platform is practical and countermeasures are needed 

to ensure mobile security. 

CCS Concepts 
Security and privacy → Mobile platform security; 

Keywords 
Cache attack; Android; AES; Side channel attack. 

1. INTRODUCTION 
With the rapid development of mobile Internet in 

recent years, mobile phones and other mobile devices 

have become an indispensable part of our lives. At 

one side, it makes our life more convenient: we can 

send mails, store personal data, communicate with 

each other, transfer money and do business with our 

smart phone. On the other side, the smart phone also 

brings security threats to us. Our personal data, 

bank account, confidential conversations are all 

subject to attack from the mobile phone. Therefore, 

with the prevalence of smart phones, more and more 

attention has been paid to their security problems.  

The smart phone manufacturers and the Android 

operating system have used various measures to 

enhance mobile security, including trusted execution 

environment (TEE), virtual memory management, 

permissions management, etc. However, due to 

complexity of Android-based smart phones, security 

vulnerabilities are inevitable.  

In modern computer architecture, although different 

processes are isolated in their own virtual address 

spaces, they still shared the same L2 cache. When the 

memory access time can be measured precisely, the 

information on Cache hit/miss will leak critical 

application execution information. Cache attack is 

such techniques that utilize precise memory access 

timing information to attack an application.  

Cache attack can by synchronous or asynchronous. For 

synchronous attack, the attackers can directly invoke 

the interfaces of the application under attack 

through shared memory spaces. For asynchronous attack, 

there is no shared memory space between the attacker 

and the victim. And the attacker can only passively 

observe the memory access behaviors during execution. 

In another word, there is no direct interaction 

between the attacker and the victim when cache attack 

is conducted, and they execute in parallel on the 

same or different kernels to access their own address 

space. Therefore, the attacker does not need extra 

permissions. 

In the last 10 years, more and more attention has 

been paid to cache attacks techniques. Kocher et al. 

[1] proposed a method to decipher the encryption 

algorithm in the computer by analyzing the 

information leaked by the cache at runtime. This idea 

has evolved rapidly under the attention of computer 

security professionals.  
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In recent years, the cache attack technique has been 

applied on the Intel x86  platform. Cache attack 

techniques are used to monitor user keyboard inputs 

and to recover AES encryption keys, For example, the 

possibility of cross-process information leakage via 

cache attack was first proposed by Hu in 1992 [1] in 

the context of intentional transmission via covert 

channels. In 1998, Kelsey et al. [2] discussed the 

possibility of “attacks based on cache hit ratio in 

large S-box ciphers.” In 2002, Page [3] described 

theoretical attacks on DES via cache misses, assuming 

an initially empty cache and the ability to identify 

cache states with very high temporal resolution in 

side-channel traces. Tsunoo et al. [4] proposed a 

timing-based attack on DES, exploiting the effects of 

collisions between the various memory lookups invoked 

internally by the cipher. Furthermore, Gruss et al. 

[5] demonstrated the possibility to automatically 

exploit cache-based side-channel information based on 

the Flush + Reload  approach. Besides attacking 

cryptographic implementations like AES T-table 

implementations, they showed how to infer keystroke 

information and even how to build a keylogger by 

exploiting the cache side channel.  

However, the CPUs of Android smart phone usually 

adopts the ARM architecture, which is different from 

the Intel x86  architecture in terms of instruction 

set, cache organization mode and cache replacement 

strategy. Therefore, effective cross-core cache 

attack on non-root mobile phones emerged until 

recently. Moritz Lipp et al. [6] proposed a cross 

core attack model for ARM processors without 

requiring root permissions. These models can 

effectively acquire privacy information based on 

statistical analysis of cache timing information 

leakage. However, there is no detailed implementation 

AES attacks on the Android platform. Because the 

cache structure of smart phones is different from 

Intel x86  architecture, the cache attack method of 

Intel x86  platform must be adapted for mobile 

platform. Frist, the cache replacement policy on the 

x86  platform uses the LRU  strategy, so eviction of 

specified cache sets to memory is straightforward. 

However, since Android uses a pseudo random 

replacement policy, we need additional measures to 

evict data from a specified cache sets into memory. 

In addition, in order to obtain stable data access 

time, it is usually necessary to preheat the access 

memory or the cache operation. The previous attacks 

usually use the first access to cache or memory 

access time to measure cache hit or not, so it is 

easy to introduce errors, resulting in unsatisfactory 

results. 

2. BACKGROUND 

2.1 Determining the Best Eviction 

Strategy 
The first thing to do is to determine the best 

eviction strategy. On Intel x86 platforms, we can use 

the cflush instruction to evict cache lines to memory. 

Although similar instructions exist on some of the 

android devices, they are only useful in privilege 

mode. So we need a more general strategy to evict the 

content of specified cache to memory.  

In our design, we adopt the continuous address access 

strategy proposed in [6]. Continuous addresses access 

is a general strategy, which reads data from 

addresses that can be mapped into the same cache sets 

to evict the data in the cache. Although we can read 

large amount of addresses to guarantee eviction of 

data from cache, a large number of memory access 

operations will not only increase time, but also 

increase the related memory storage for addresses. 

Furthermore, since the cache of the mobile device 

uses pseudo random replacement strategy, continuous 

reading of a plurality of memory data does not 

guarantee the eviction cache content. We make use of 

the method proposed by Moritz Lipp et al. [6] to 

automatically generate eviction strategies and test 

its applicability. We have evaluated a large number 

of eviction patterns on our Lenovo k51c78 mobile 

phone, and identified the best eviction strategy. 

2.2 The Prime + Probe Strategy 
In order to obtain privacy information through the 

cache, the attacker must have the ability to get 

cache state. The prime +  probe  approach allows an 

adversary to determine the cache sets used by the 

victim’s computation. It consists of the following 

three basic steps. 

Prime + Probe: 

1. Occupy specific cache sets. 

2. Victim program is scheduled. 

3. Determine which cache sets are still occupied. 

The following steps detail the three stages of 

Prime + Probe. First, for a specified set, the Prime 

phase maps data to the cache and the previous cached 

data is evicted into memory. Then the victim program 

is executed. During its execution, the memory which 

was accessed may be mapped to some sets of the cache 

and took part of the line in the set. The last step 

is Probe, which checks whether the data putted into 

cache in the Prime phase is still in cache. It 

measures the access time for memory addresses. If the 

memory access time is large, it indicates a cache 

miss has occurred. Therefore, the victim program is 



highly probably to have accessed memory addresses 

mapped to the cache. 

2.3 Precise Measurement of Time 
An accurate timing method is crucial for successful 

cache attack. Because cache attack techniques must 

use time to distinguish cache hit and cache miss, 

which in turn helps the attacker to pinpoint which 

cache sets have been used by the victim program. In 

order to distinguish the situation between cache hit 

and cache miss, timing sources or dedicated 

performance counters can be used. Moritz Lipp et al. 

[6] has proposed several non-privileged timing 

methods. However, these interfaces are not supported 

on all Android versions and all processors. Therefore, 

it is necessary to determine the effective timing 

method that can accurately and stably measure memory 

access time for the device under attack. Besides 

reading the CPU register to obtain the CPU cycle to 

measure the time, there are three other measures. The 

first is clock_gettime  syscall, which is the timing 

function of  nanoseconds accuracy. The second is the 

Perf performance analysis tool. The availability of 
this feature depends on the Android kernel 

configuration. The third is a thread timing simulator. 

If no interface with sufficient accuracy is available, 

an attacker can run a thread that increments a global 

variable in a loop, providing a fair approximation of 

a cycle counter. In this work, we firstly evaluate 

the availability of different timing approach for our 

phone model. Then we choose the more precise one 

among those available approaches. 

3. ATTACKING AES ALGORITHMS 

3.1 The First Round Attack 
In this paper, we focus on attacking AES 

implementations whose memory access patterns are 

particularly susceptible to cryptanalysis. Because 

many implementations of AES on 32-bit processors are 

based on lookup tables, as prescribed in the Rijndael 

specification [7][8]. In our cases, the victim AES 

implementation uses 8 T-tables, 𝑇0 , 𝑇1 , 𝑇2 , 𝑇3 , 

and  𝑇0
(10)

,  𝑇1
(10)

,  𝑇2
(10)

,  𝑇3
(10)

, and each T-table contains 

256 4-byte words. During the process of AES 

encryption, key k = (𝑘0, … , 𝑘15)  is expanded into 10 

round keys 𝐾(𝑟)  for r = 1, … 10 . Each round key is 

divided into 4 words of 4 bytes each: 𝐾(𝑟) =

(𝐾0
(𝑟)

, 𝐾1
(𝑟)

, 𝐾2
(𝑟)

, 𝐾3
(𝑟)

). The 0
th
 key is just the original 

key  

𝐾(0) = (𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝑘7, 𝑘8, 𝑘9, 𝑘10, 𝑘11, 𝑘12, 𝑘13, 𝑘14, 𝑘15).  

Given a 16-byte plaintext p = (𝑝0, … , 𝑝15) , the AES 

encryption progress need to calculate 4 intermediate 

index for each T-table at each round. The initial 

indices 𝑥(0)  can be computed by 𝑥𝑖
(0) = 𝑝𝑖 ⊕ 𝑘𝑖  for i =

0, … ,15 . Then, the first 9 rounds are computed by 

calculating the intermediate state as follows, for 

round r = 0, … ,8: 

(𝑥0
(𝑟+1)

, 𝑥1
(𝑟+1)

, 𝑥2
(𝑟+1)

, 𝑥3
(𝑟+1)

) ← 𝑇0[𝑥0
(𝑟)

]  ⊕ 𝑇1[𝑥5
(𝑟)

]  ⊕ 𝑇2[𝑥10
(𝑟)

]  ⊕ 𝑇3[𝑥15
(𝑟)

]  ⊕ 𝐾0
(𝑟+1)

  

(𝑥4
(𝑟+1)

, 𝑥5
(𝑟+1)

, 𝑥6
(𝑟+1)

, 𝑥7
(𝑟+1)

) ← 𝑇0[𝑥4
(𝑟)

]  ⊕ 𝑇1[𝑥5
(𝑟)

]  ⊕ 𝑇2[𝑥14
(𝑟)

]  ⊕ 𝑇3[𝑥3
(𝑟)

]  ⊕ 𝐾1
(𝑟+1)

  

(𝑥8
(𝑟+1)

, 𝑥9
(𝑟+1)

, 𝑥10
(𝑟+1)

, 𝑥11
(𝑟+1)

) ← 𝑇0[𝑥8
(𝑟)

]  ⊕ 𝑇1[𝑥13
(𝑟)

]  ⊕ 𝑇2[𝑥2
(𝑟)

]  ⊕ 𝑇3[𝑥7
(𝑟)

]  ⊕ 𝐾2
(𝑟+1)

  

(𝑥12
(𝑟+1)

, 𝑥13
(𝑟+1)

, 𝑥14
(𝑟+1)

, 𝑥15
(𝑟+1)

) ← 𝑇0[𝑥12
(𝑟)

]  ⊕ 𝑇1[𝑥1
(𝑟)

]  ⊕ 𝑇2[𝑥6
(𝑟)

]  ⊕ 𝑇3[𝑥11
(𝑟)

]  ⊕ 𝐾3
(𝑟+1) 

However, in the last round, AES replaces  𝑇0, 𝑇1,𝑇2, 

𝑇3, to  𝑇0
(10)

,  𝑇1
(10)

,  𝑇2
(10)

,  𝑇3
(10)

, and the result 𝑥(10) is 

the cipher text. 

We can only distinguish a cache hit from cache miss 

by measuring memory access time. Furthermore, the 

structure of many smartphones’ cache set is 

associative mapping. Such a cache consists of storage 

units called cache lines, each consisting of B bytes. 
The cache is organized into S cache sets, each 

containing W cache lines, so overall the cache 

contains 𝐵 ∗ 𝑆 ∗ 𝑊  bytes. The size of one T-table 

entry is 4 bytes and the cache line size B is usually 
64 bytes, so every cache line can cache 16 T-table 

entries. If two T-table entries map to the same cache 

line, we say that the two entries are correlative. 

However Prime + Probe  only can evict and occupy a 

specified cache set, and then measure the Probe time. 

Since the cache set is the smallest eviction unit, we 

could not just evict and occupy a cache line of a 

specified set. So it is impossible to distinguish two 

different byte addresses or cache T-table entries 

mapped to the same cache set only by having knowledge 

of cache hit or cache miss. Since every cache set 

line can cache 64 bytes, and T-table entry is 4 bytes, 

16 continuous T-table entries map to the same cache 

set if the start address of first entry exactly map 

to the start of cache line.  

In this paper, we use Prime + Probe  technique to 

efficiently extract the full key. The approach is 

divided into the first round and the second round 

attack. Given a 16 byte key K = (𝑘0  ,...., 𝑘15 ), it 

will be extended to the 10 round internal keys 

𝐾（r） for r=1,... 10 in AES encryption process. Each 

round key is divided into 4 words of 4 bytes 

each: 𝐾(𝑟) = (𝐾0
(𝑟)

, 𝐾1
(𝑟)

, 𝐾2
(𝑟)

, 𝐾3
(𝑟)

) . In the first round 

attack, we successfully gain the first 4 bits of each 

byte. The first round attack is based on the accessed 

indices of T-table which can be calculated simply 

through the key and plaintext namely 𝑥𝑖
(0) = 𝑝𝑖 ⊕ 𝑘𝑖 for 

all key index i = 0, … ,15. Thus, if we know the value 

of plaintext byte 𝑝𝑖  and any information on the 

accessed index 𝑥𝑖
(0) , we can directly translate these 

knowledge to information on key byte 𝑘𝑖 . In the 

progress of AES encryption, the first round of access 

index of T-table can be obtained by the plaintext and 

key through 𝑋𝑂𝑅 operation.   



In this work, in order to obtain the key bits of the 

AES, we guess the value of the key firstly and then 

verify that whether they are the exact true key bytes. 

In the hypothesis process, we only need to assume the 

value of the first 4 bits of each byte because the 

last 4 bits could not be distinguished in the first 

round attack. There are two main step in the process 

of hypothesis testing, the first step is to guess the 

value of key bits of each byte, in which we should 

enumerate the possible value of the first 4 bits for 

every key byte separately from 0 to 15. In the second 

step, we can calculate the index 𝑖  and the T-table 

index based on known plaintext and the guessed key. 

And then we can calculate the cache set index 𝑗 , 

which T-table data in index 𝑖 should map to. Finally 

we inspect whether the cache set 𝑗 had been used in 

the process of AES encryption by Prime + Probe . 

Finally, we used the K-S statistical test to 

determine whether the two distributions are the same 

or not. The data of the first distribution measures 

the time of Prime. While samples of the second 

distribution are the time of Probe. If the K-S test 

concludes that the two samples belong to different 

distribution, we can say that the victim AES 

implementation has accessed the specified sets during 

execution. 

3.2 The Second Round Attack 
The First-Round attack can only narrow each key byte 

down to 1/16 possibility, but the table lookups in 

the first round cannot reveal more information. In 

our experiment, the AES key contains 16 bytes, so 

there are still 64 unknown bits to search for. The 

second round attack mainly relies on the nonlinear 

relationship between the plaintext, the key and the 

cipher. 

The indices accessed in the second round of 

encryption are not apparent as in the first round. We 

exploit the following equations derived from the 

Rijndael  specification, which give the four indices 

of table lookups in the 2nd round. We can get 2nd 

access indices as follows: 

𝑥2 = 𝑠(𝑝0⊕𝑘0)⊕𝑠(𝑝5⊕𝑘5)⊕2•𝑠(𝑝10⊕𝑘10)⊕3•𝑠(𝑝15⊕𝑘15)⊕

𝑠(𝑘15)⊕𝑘2 

𝑥5 = 𝑠(𝑝4⊕𝑘4)⊕2•𝑠(𝑝9⊕𝑘9)⊕3•𝑠(𝑝14⊕𝑘14)⊕𝑠(𝑝3⊕𝑘3)⊕

𝑠(𝑘14)⊕𝑘1⊕𝑘15 

𝑥8 = 2•𝑠(𝑝8⊕𝑘8)⊕3•𝑠(𝑝13⊕𝑘13)⊕𝑠(𝑝2⊕𝑘2)⊕𝑠(𝑝7⊕𝑘7)⊕

𝑠(𝑘13)⊕𝑘0⊕𝑘4⊕𝑘8⊕1 

𝑥15 = 3•𝑠(𝑝12⊕𝑘12)⊕𝑠(𝑝1⊕𝑘1)⊕𝑠(𝑝6⊕𝑘6)⊕2• 𝑠(𝑝11⊕

𝑘11)⊕𝑠(𝑘12)⊕𝑘15⊕𝑘3⊕𝑘7⊕𝑘11 

Here, s(•) denotes the Rijndael S-box function, and • 

denotes multiplication over GF(256). 

The indices 𝑥2, 𝑥5, 𝑥8, and 𝑥15 are indices of T-table 

2, 1, 0, and 3, respectively. These indices are 

crucial to achieve AES attack. In this round, AES 

attack is performed by enumerating all possible 

values of all keys and observing the collected timing 

information statistically. Hypothesis testing is 

performed to identify a correct guess. For each 

candidate guess, we collect its timing information as 

samples, and then we perform statistical K-S test to 

help identify the best guess. 

Since we already have grained the first 4 bits of 

each key byte, there are only 4 ∗ 16  bits needed to 

guess in round 2. Furthermore, since 4 key bytes 

together are needed to determine a second round T-

table index. We must guess 4 half bytes 

simultaneously in second round hypothesis testing. 

For each guess, we can get a measurement score 𝑚 . 

Based on m, we can determine which guess has the 

highest probability. Then we can get the index in T-

table when AES encryption is executed by plaintext 𝑝 

with key 𝑘. Because the T-table access index reflects 

the cache set index, T-table access index may in turn 

lead to different access time for Prime + Probe 

operation. 

3.3 The K-S Statistical Test 
In statistics, the Kolmogorov–Smirnov test [9] (K–S 

test) is a nonparametric test of the equality of 

continuous, one-dimensional probability distributions. 

It can be used to compare a sample with a reference 

probability distribution (one-sample K–S test), or 

to compare two samples (two-sample K–S test). It is 

named after Andrey Kolmogorov and Nikolai Smirnov. 

The two Sample K-S test is one of the most useful and 

general nonparametric methods for comparing two 

samples.   

In this work, we adopt the K-S test to determine 

whether the victim program accessed the specified 

sets of cache when attack is scheduled. At this point, 

two samples that are crucial in cache attack are 

ready. The first sample is the collection of 

measurement data of Prime followed directly by the 

Probe operation. The second sample is the collection 

of measurement data of Prime operation, the memory 

access of victim, and the probe operation. If the 

memories accessed during the execution of the victim 

program are not mapped to the specified cache sets, 

the access time of the two samples should be similar 

and the result of the K-S test must confirm that the 

two samples belong to the same distribution. On the 

other hand, if the memories accessed during the 

execution of the victim program are mapped to the 

specified set, the time in the second sample will be 

greater than the time in the first sample in 

distribution. So with the help of K-S test we can 

automatically check whether the two samples belong to 

a same distribution or not. 



4. EXPERIMENTAL STUDY 
Table 1. Lenovo K51c78 information 

System 
Cache 

Size 
Processor 

Cache 

details 

Android 

5.0 
512 KB 

ARM MT6753 8 

cores 

512 sets  

16-way set 

associative  

 

In this section, we will perform the attack based on 

our proposed approach on Android phone. This paper 

mainly implements the side channel attack on AES at 

Lenovo K51c78. The details property of Lenovo K51c78 

is shown in Table 1. We can see in Table 1 that the 

phone we use in the experiment is based on 8-core arm 

processor  with 512KB of cache. The operating system 

of the phone is Android 5.0. 

The attack processes can be divided into three steps: 

the preparation phase, the first round attack and the 

second round attack. The preparation phase mainly 

focused on finding the precise time of cache hit and 

cache miss thresholds and finding fast and effective 

eviction strategies for the target smartphone. Then 

we performed the first round and the second round of 

attack as described in previous sections. Within each 

round of attack, we obtain two samples for K-S test. 

Finally, we perform K-S test to compare the sample 

distributions. In order to obtain all key bit we 

firstly enumerate all possible value of AES bytes and 

then obtain the related measurement score. The 

measurement score reflects the suspiciousness of a 

certain key guess. So we can sort the guessed key 

based on the measurement score. To reveal all AES key, 

the first round attack is performed and the first 

four bits of each byte are revealed successfully.  

 

As shown in Figure 1, we can get the first 4 bits for 

each key byte (16 in total). Each diagram represents 

the first 4 bits of a key byte, plotted by 4-bit 

values (0-15) on the horizontal axis and its K-S 

measurement scores on the vertical. We can verify the 

first 4-bit values are exactly the first 4-bit key 

values for AES encryption.  

In order to obtain the whole key bytes of the AES key, 

we conduct the second round of attack. Through the 

hypothesis testing of the remaining key bits, we 

calculate the corresponding cache set access indices, 

and then get the K-S value for the corresponding 

indices as the measurement score. Finally, we sort 

the score and find the highest score. We confirm 

again the assumption key bytes related to the highest 

measurement score are exact the key values used for 

AES. As shown in Figure 2-5, each diagram represents 

the last 4 bits of 4 key bytes, plotted by 4-bit 

values on the y-axis and measurement scores on the x-

axis. As there is a large amount of combinations for 

every 4 half key bytes, only combinations gaining the 

highest measurement score are shown. Figure 2 shows 

the measurement scores of key byte indices 0, 5, 10, 

15. So we can conclude that the hypothesis values for 

indices 0, 5, 10, 15 are separately 0x0, 0x5, 0x2, 

0x7. Figure 3, Figure 4, Figure 5 can be interpreted 

similarly like Figure 2. So, we can get the last 4-

bit value (0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 

0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7) for indices 

0-15, which are exactly the real 4-bit key values, 

used for AES encryption. 

The experiment results are shown as follows: 

 

 
Figure 2. The Result of the Second Round Attack(0, 5, 

10, 15). 

 

Figure 1. The Result of First Round Attack. 



 
Figure 3. The Result of the Second Round Attack(4, 9, 

14, 3). 

 

 
Figure 4. The Result of the Second Round Attack (8, 

13, 2, 7). 

 

 
Figure 5. The Result of the Second Round Attack (12, 

1, 6, 11). 

As shown in Figure 2 to Figure 5, we can obviously 

get the last four bits of each key. The y-axis 

represents the 4 possible hypothesis values for the 

corresponding key byte indices. The x-axis represents 

their corresponding K-S scores. We only show 

combinations graining the highest measurement score. 

Figure 2 shows the measurement scores for key byte 

indices 0, 5, 10, 15. So we can conclude that the 

hypothesis values for indices 0, 5, 10, 15 are 0x0, 

0x5, 0x2, 0x7, respectively. Figure 3 to Figure 5 can 

be interpreted similarly. 

5. RELATED WORK 
In this section, we review the closely related works. 

Bernstein [10] exploited the total execution time of 

AES T-table to implement cache timing attacks. 

Percival [11] and Osvik et al. [12] proposed more 

fine-grained exploitations of memory accesses to the 

CPU cache than Bernstein’s. Osvik et al.[12] 

proposed two concepts, namely evict+time and 

prime+probe, to determine which specific cache sets 
were accessed by a victim program. Yarom and Falkner 

[13] proposed Flush+Reload to attack cryptographic 

implementations and to build cross-VM covert channels 

[14], which are significantly more fine-grained 

attack that exploits three fundamental concepts of 

modern system architectures. Gruss et al. [15] 

proposed the method of Evict+Reload, which uses 

eviction instead of flush instruction. However, this 

method has been implemented on Intel platform. 

Wei et al.  [16] proposed that ARM architecture is 

different from Intel platform, the attack methods 

proposed for Intel x86 CPUs are not exactly suit for 

smartphones CPUs, so it is harder to hold a cache 

attack on Android devices. Spreitzer and Plos [17] 

proposed that although the cache attacks on mobile 

devices are more difficult, there are still 

information leaked by investigated the applicability 

of Bernstein’s attack on smartphone. Similarly, Oren 

et al. [18] demonstrated the possibility to exploit 

cache attacks on Intel platforms from JavaScript and 

showed how to infer visited websites and how to track 

the user’s mouse activity. 

6. CONCLUSION 
Cache attack was a successful technique to realize 

cross-process information leakage on Intel x86 

platform. However, modern smartphones use one or more 

multi-core ARM CPUs that have a different cache 

organization from Intel x86  CPUs. Therefore, cache 

attack on Android smartphone poses different 

challenges. In this work we have realized a 

successful cache attacks on AES implementations based 

on Prime + Probe  and K-S statistical test. We have 

successfully recovered all AES key bytes after two 

rounds of attack. Furthermore, these attacks are 

practical as no privileged permissions are required. 

For future work, we will further explore asynchronous 

attacks on AES implementations to further enhance the 

applicability of our work. 

7. ACKNOWLEDGMENTS 
This research is supported in part by NSFC (project 

no. 61772056 and 61690202), the Research Fund of the 

MIIT of China (project no. MJ-Y-2012-07), and the 

research fund of the State Key Laboratory of Virtual 

Reality Technology and Systems.  



8.  REFERENCES 
[1] P. C. Kocher, Timing attacks on implementations 

of diffie-hellman, rsa, dss, and other systems, 

in Advances in Cryptology-CRYPTO’96, pp. 104–

113, Springer, 1996. 

[2] J. Kelsey, B. Schneier, D. Wagner, C. Hall, Side 

channel cryptanalysis of product ciphers, in Proc. 

5th European Symposium on Research in Computer 

Security. Lecture Notes in Computer Science, vol. 

1485, Berlin, pp. 97–110, Springer, 1998. 

[3] D. Page, Theoretical use of cache memory as a 

cryptanalytic side-channel. Technical Report 

CSTR-02-003, Department of Computer Science, 

University of Bristol, 2002.  

[4] Y. Tsunoo, E. Tsujihara, K. Minematsu, H. 

Miyauchi, Cryptanalysis of block ciphers 

implemented on computers with cache, in Proc. 

International Symposium on Information Theory and 

Its Applications, pp. 803–806, 2002. 

[5] D. Gruss, R. Spreitzer, S. Mangard, Cache 

Template Attacks: Automating Attacks on Inclusive 

Last-Level Caches. In USENIX Security Symposium, 

USENIX Association, pp. 897–912, 2015. 

[6] M. Lipp, D. Gruss, R. Spreitzer et al, ARMageddon: 

Cache Attacks on Mobile Devices. Mundo 

Electrónico, 6(1): pp 60-65, 2016. 

[7] J. Daemen, V. Rijmen, AES Proposal: Rijndael, 

version 2, AES submission, 1999. 

http://csrc.nist.gov/archive/aes/rijndael/Rijndae

l-ammended.pdf 

[8] J. Daemen, V. Rijmen, The Design of Rijndael: 

AES—The Advanced Encryption Standard, Berlin, 

Springer, 2001. 

[9] W. Feller, On the Kolmogorov–Smirnov Limit 

Theorems for Empirical Distributions. Selected 

Papers I. Springer International Publishing, pp. 

177-189, 2015. 

[10] D. J. Bernstein, Cache-Timing Attacks on AES, 

2004. URL:http://cr.yp.to/papers.html#cachetiming. 

[11] C. Percival, Cache Missing for Fun and Profit, 

2005. URL: 

http://daemonology.net/hyperthreadingconsidered-

harmful/. 

[12] D. A. Osvik, A. Shamir, E. Tromer, Cache Attacks 

and Countermeasures: The Case of AES. In Topics 

in Cryptology – CT-RSA, vol. 3860 of LNCS, pp. 

1–20, Springer, 2006. 

[13] Y. Yarom, K. Falkner, FLUSH+RELOAD: A High 

Resolution, Low Noise, L3 Cache Side-Channel 

Attack. In USENIX Security Symposium, USENIX 

Association, pp. 719–732, 2014. 

[14] C. Maurice, C. Neumann, O. Heen, A. Francillon, 

C5: Cross-Cores Cache Covert Channel. In 

Detection of Intrusions and Malware, and 

Vulnerability Assessment – DIMVA, vol. 9148 of 

LNCS, pp. 46–64, Springer, 2015. 

[15] D. Gruss, R. Spreitzer, S. Mangard, Cache 

Template Attacks: Automating Attacks on Inclusive 

Last-Level Caches. In USENIX Security Symposium, 

USENIX Association, pp. 897–912, 2015. 

[16] M. Weiss, B. Heinz, F. Stumpf, A Cache Timing 

Attack on AES in Virtualization Environments. In 

Financial Cryptography and Data Security – FC, 

vol. 7397 of LNCS, pp. 314–328, Springer, 2012. 

[17] R. Spreitzer, T. Plos, On the Applicability of 

Time-Driven Cache Attacks on Mobile Devices. In 

Network and System Security – NSS, vol. 7873 of 

LNCS, pp. 656–662, Springer, 2013. 

[18] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, A. D. 

Keromytis, The Spy in the Sandbox: Practical 

Cache Attacks in JavaScript and their 

Implications. In Conference on Computer and 

Communications Security – CCS, ACM, pp. 1406–

1418, 2015. 

 


